Home
Class 12
MATHS
If A is an invertible matrix, tehn (a d ...

If `A` is an invertible matrix, tehn `(a d jdotA)^(-1)` is equal to `a d jdot(A^(-1))` b. `A/(d e tdotA)` c. `A` d. `(detA)A`

A

adj. `(A^(-1))`

B

`A/("det. A")`

C

`A`

D

(det. A) A

Text Solution

Verified by Experts

`A^(-1)=("adj (A)")/(|A|)`
`:. ("adj A")^(-1)=("adj (adj A)")/(|"adj A"|)`
`=(|A|^(n-2) A)/(|A|^(n-1))`
`=A/(|A|)`
Also A (adj A) `=|A|I`
or `A^(-1) ("adj "A^(-1))=|A^(-1|I`
or `A^(-1) ("adj "A^(-1))=I/(|A|)`
or `A A^(-1) ("adj "A^(-1))=(A.I)/(|A|)`
or `I ("adj "A^(-1))=A/(|A|)`
or `("adj "A^(-1))=A/(|A|)=("adj "A)^(-1)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Comprehension)|18 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Single)|65 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A is an invertible matrix,tehn (adj.A)^(-1) is equal to adj.(A^(-1)) b.(A)/(det.A) c.A d.(det A)A

If A is an invertible matrix then det(A^-1) is equal to (A) 1 (B) 1/|A| (C) |A| (D) none of these

If A is an invertible matrix of order 2 then det (A^(-1)) is equal to (a) det (A) (b) (1)/(det(A))(c)1 (d) 0

If matrix A=[(a,b),(c,d)] , then |A|^(-1) is equal to

If [[a,b],[c,d]] is invertible,then

If A is an orthogonal matrix then A^(-1) equals A^(T) b.A c.A^(2) d.none of these

If A= [[a,b],[c,d]] is invertible,then A^(-1)

If A and B are invertible matrices, which of the following statement is not correct. a d j\ A=|A|A^(-1) (b) det(A^(-1))=(detA)^(-1) (c) (A+B)^(-1)=A^(-1)+B^(-1) (d) (A B)^(-1)=B^(-1)A^(-1)

A square matrix A is invertible iff det (A) is equal to (A) -1 (B) 0 (C) 1 (D) none of these

If A is an invertible matrix, then which of the following is not true (A^2)^-1=(A^(-1))^2 (b) |A^(-1)|=|A|^(-1) (c) (A^T)^(-1)=(A^(-1))^T (d) |A|!=0

CENGAGE-MATRICES-Exercise (Multiple)
  1. P is a non-singular matrix and A, B are two matrices such that B=P^(-1...

    Text Solution

    |

  2. Let A=[(1,2,2),(2,1,2),(2,2,1)]. Then

    Text Solution

    |

  3. If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then

    Text Solution

    |

  4. If Ais symmetric and B is skew-symmetric matrix, then which of the fol...

    Text Solution

    |

  5. If A=((a(i j)))(nxxn) and f is a function, we define f(A)=((f(a(i j)))...

    Text Solution

    |

  6. If a is matrix such that A^(2)+A+2I=O, then which of the following is/...

    Text Solution

    |

  7. If A =[{:(3,,-3,,4),(2,,-3,,4),(0,,-1,,1):}], then adj (adj A) is

    Text Solution

    |

  8. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  9. If A^(-1)=[(1,-1,2),(0,3,1),(0,0,-1//3)], then

    Text Solution

    |

  10. If A is an invertible matrix, tehn (a d jdotA)^(-1) is equal to a d jd...

    Text Solution

    |

  11. If A and B are two invertible matrices of the same order, then adj (AB...

    Text Solution

    |

  12. If A, B, and C are three square matrices of the same order, then AB=AC...

    Text Solution

    |

  13. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  14. If A and B are square matrices of order 3 such that A^(3)=8 B^(3)=8I a...

    Text Solution

    |

  15. Let A, B be two matrices different from identify matrix such that AB=B...

    Text Solution

    |

  16. Let A and B be square matrices of the same order such that A^(2)=I and...

    Text Solution

    |

  17. Let B is an invertible square matrix and B is the adjoint of matrix A ...

    Text Solution

    |

  18. First row of a matrix A is [1,3,2]. If adj A=[(-2,4,alpha),(-1,2,1),...

    Text Solution

    |

  19. Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2...

    Text Solution

    |

  20. Which of the following matericeshave eigen values as 1 and -1 ?

    Text Solution

    |