Home
Class 12
MATHS
Let A=[a("ij")] be 3xx3 matrix and B=[b(...

Let `A=[a_("ij")]` be `3xx3` matrix and `B=[b_("ij")]` be `3xx3` matrix such that `b_("ij")` is the sum of the elements of `i^(th)` row of A except `a_("ij")`. If det, `(A)=19`, then the value of det. (B) is ________ .

A

`|A|`

B

`|A|//2`

C

`2|A|`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`A=[(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33))]`
`implies B=[(a_(12)+a_(13),a(11)+a_(13),a_(11)+a_(12)),(a_(22)+a_(23),a_(21)+a_(23),a_(21)+a_(22)),(a_(32)+a_(33),a_(31)+a_(33),a_(31)+a_(32))]`
`implies X=A^(-1) B`
`=1/(|A|)[(C_(11),C_(21),C_(31)),(C_(12),C_(22),C_(32)),(C_(13),C_(23),C_(33))]`
`[(a_(12)+a_(13),a_(11)+a_(13),a_(11)+a_(12)),(a_(22)+a_(23),a_(21)+a_(23),a_(21)+a_(22)),(a_(32)+a_(33),a_(31)+a_(33),a_(31)+a_(32))]`
`=1/(|A|) [(0,|A|,|A|),(|A|,0,|A|),(|A|,|A|,0)]=[(0,1,1),(1,0,1),(1,1,0)]`
`implies |A^(-1)B|=2`
or `|A^(-1)||B|=2`
or `|B|=2|A|`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Numerical)|24 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Consider an arbitarary 3xx3 non-singular matrix A[a_("ij")] . A maxtrix B=[b_("ij")] is formed such that b_("ij") is the sum of all the elements except a_("ij") in the ith row of A. Answer the following questions : If there exists a matrix X with constant elemts such that AX=B , then X is

Let A=[a_(ij)] be a square matrix of order 3 and B=[b_(ij)] be a matrix such that b_(ij)=2^(i-j)a_(ij) for 1lei,jle3, AA i,j in N . If the determinant of A is same as its order, then the value of |(B^(T))^(-1)| is

Let A=[a_(ij)] and B=[b_(ij)] be two 3xx3 real matrices such that b_(ij)=(3)(i+j-2)a_(ji) , where i, j = 1,2,3. If the determinant of B is 81, then the determinant of A is :

Let P=[a_("ij")] be a 3xx3 matrix and let Q=[b_("ij")] , where b_("ij")=2^(i+j) a_("ij") for 1 le i, j le 3 . If the determinant of P is 2, then the determinant of the matrix Q is

Let A=[a_(ij)]_(n xx n) be a square matrix and let c_(ij) be cofactor of a_(ij) in A. If C=[c_(ij)], then

Let A=[a_("ij")] be a matrix of order 2 where a_("ij") in {-1, 0, 1} and adj. A=-A . If det. (A)=-1 , then the number of such matrices is ______ .

If A=[a_(ij)]_(3xx3) is a scalar matrix such that a_(ij)=5" for all "i=j," then: "|A|=

If matrix A = [a_(ij)]_(3xx3), matrix B= [b_(ij)]_(3xx3) where a_(ij) + a_(ij)=0 and b_(ij) - b_(ij) = 0 then A^(4) cdot B^(3) is

Let A=[a_("ij")]_(3xx3), B=[b_("ij")]_(3xx3) and C=[c_("ij")]_(3xx3) be any three matrices, where b_("ij")=3^(i-j) a_("ij") and c_("ij")=4^(i-j) b_("ij") . If det. A=2 , then det. (BC) is equal to _______ .

CENGAGE-MATRICES-Exercise (Comprehension)
  1. Let a be a matrix of order 2xx2 such that A^(2)=O. A^(2)-(a+d)A+(ad-...

    Text Solution

    |

  2. Let a be a matrix of order 2xx2 such that A^(2)=O. tr (A) is equal t...

    Text Solution

    |

  3. Let a be a matrix of order 2xx2 such that A^(2)=O. (I+A)^(100) =

    Text Solution

    |

  4. If A and B are two square matrices of order 3xx3 which satify AB=A and...

    Text Solution

    |

  5. if A and B are two matrices of order 3xx3 so that AB=A and BA=B then (...

    Text Solution

    |

  6. If A and B are two square matrices of order 3xx3 which satisfy AB=A an...

    Text Solution

    |

  7. Consider an arbitarary 3xx3 non-singular matrix A[a("ij")]. A maxtrix ...

    Text Solution

    |

  8. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  9. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ...

    Text Solution

    |

  10. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ...

    Text Solution

    |

  11. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  12. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  13. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  14. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  15. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  16. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  17. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  18. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |