Home
Class 12
MATHS
Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfie...

Let `A=[(1,0,0),(1,0,1),(0,1,0)]` satisfies `A^(n)=A^(n-2)+A^(2)-I` for `n ge 3`. And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal.
Further consider a matrix `underset(3xx3)(uu)` with its column as `uu_(1), uu_(2), uu_(3)` such that
`A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)]`
Then answer the following question :
The value of `|uu|` equals

A

0

B

1

C

2

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
B

`A^(n)-A^(n-2)=A^(2)-I implies A^(50)=A^(48)+A^(2)-I`
Further,
`A^(48)=A^(46)+A^(2)-I`
`A^(46)=A^(44)+A^(2)-I`
`{:(vdots,vdots,vdots,vdots):}`
`(A^(4)=A^(2)+A^(2)-I)/(A^(50)=25 A^(2)-24I)`
Here,
`A^(2)=[(1,0,0),(1,0,1),(0,1,0)][(1,0,0),(1,0,1),(0,1,0)]=[(1,0,0),(1,1,0),(1,0,1)]`
`implies A^(50)=[(25,0,0),(25,25,0),(25,0,25)]-24 [(1,0,0),(0,1,0),(0,0,1)]`
`=[(1,0,0),(25,1,0),(25,0,1)]`
`:. |A^(50)|=1`
Also, `tr(A^(50))=1+1+1=3`. Further,
`[(1,0,0),(25,1,0),(25,0,1)][(x),(y),(z)]=[(1),(25),(25)]implies [(x),(y),(z)]= uu_(1)=[(1),(0),(0)]`
Similarly,
`uu_(2)=[(0),(1),(0)]` and `uu_(3)=[(0),(0),(1)]implies uu=[(1,0,0),(0,1,0),(0,0,1)]`, i.e., `|uu|=1`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Numerical)|24 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The values of |A^(50| equals

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : Trace of A^(50) equals

Let A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I for nge 3 and consider matrix underset(3xx3)(U) with its columns as U_(1), U_(2), U_(3), such that A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]] Trace of A^(50) equals

Let A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I for nge 3 and consider matrix underset(3xx3)(U) with its columns as U_(1), U_(2), U_(3), such that A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]] The value of abs(A^(50)) equals

Let A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I for nge 3 and consider matrix underset(3xx3)(U) with its columns as U_(1), U_(2), U_(3), such that A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]] The value of abs(U) equals

A=[(1,0,0),(2,1,0),(3,2,1)], if uu_1, uu_2 and uu_3 are columns matrices satisfying. Auu_1=[(1),(0),(0)], Auu_2=[(2),(3),(0)],Auu_3=[(2),(3),(1)] and uu is b3xx3 matrix whose columns are uu_1, uu_2, uu_3 then answer the following questions The value of |uu| is

The elements in the first row and third column of the inverse of the matrix [(1,2,3),(0,1,2),(0,0,1)] is

CENGAGE-MATRICES-Exercise (Comprehension)
  1. Let a be a matrix of order 2xx2 such that A^(2)=O. A^(2)-(a+d)A+(ad-...

    Text Solution

    |

  2. Let a be a matrix of order 2xx2 such that A^(2)=O. tr (A) is equal t...

    Text Solution

    |

  3. Let a be a matrix of order 2xx2 such that A^(2)=O. (I+A)^(100) =

    Text Solution

    |

  4. If A and B are two square matrices of order 3xx3 which satify AB=A and...

    Text Solution

    |

  5. if A and B are two matrices of order 3xx3 so that AB=A and BA=B then (...

    Text Solution

    |

  6. If A and B are two square matrices of order 3xx3 which satisfy AB=A an...

    Text Solution

    |

  7. Consider an arbitarary 3xx3 non-singular matrix A[a("ij")]. A maxtrix ...

    Text Solution

    |

  8. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  9. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ...

    Text Solution

    |

  10. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ...

    Text Solution

    |

  11. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  12. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  13. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  14. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  15. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  16. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  17. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  18. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |