Home
Class 12
MATHS
Find the real values of x for which the ...

Find the real values of x for which the function `f(x) = cos^(-1) sqrt(x^(2) + 3 x + 1) + cos^(-1) sqrt(x^(2) + 3x)` is defined

Text Solution

Verified by Experts

The correct Answer is:
`x = 0, -3`

We have `f(x) = cos^(-1) sqrt(x^(2) + 3x + 1) + cos^(-1) sqrt(x^(2) + 3x)`
We must have `0 le x^(2) + 3x + 1 le 1 and 0 le x^(2) + 3x le 1`
`rArr x^(2) + 3x = 0`
`rArr x = 0, -3`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.3|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=cos(log(x+sqrt(x^(2)+1))) is :

Integrate the functions (x cos^(-1)x)/(sqrt(1-x^(2)))

Find the values of x which the function f(x)=sqrt(log_(1//2)((x-1)/(x+5)) is defined.

Find the set of value of x for which the equation cos^(-1) x + cos^(-1) ((x)/(2) + (1)/(2) sqrt(3 -3x^(2))) = (pi)/(3) holds goods

Find the values of x for which the follwing function is defined: f(x)=sqrt(1)/(|x-2|-(x-2))

Domain and range of the function f(x)=cos(sqrt(1-x^(2))) are

The function f(x) = cot^(-1) sqrt(x(x+3)) + cos^(-1) sqrt(x^(2) + 3x +1) is defined on the set S, where S is equal to

Find the value of x for which function are identical.f(x)=cos x and g(x)=(1)/(sqrt(1+tan^(2)x))