Home
Class 12
MATHS
If x lt 0, then prove that cos^(-1) x = ...

If `x lt 0`, then prove that `cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)`

Text Solution

AI Generated Solution

To prove that \( \cos^{-1} x = \pi + \tan^{-1} \left( \frac{\sqrt{1 - x^2}}{x} \right) \) for \( x < 0 \), we can follow these steps: ### Step 1: Assume \( x = \cos \theta \) Since \( x < 0 \), we can assume that \( x = \cos \theta \) where \( \theta \) is in the range \( \left( \frac{\pi}{2}, \pi \right) \). ### Step 2: Express \( \theta \) in terms of \( x \) From our assumption, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.3|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

Prove that cos[tan^(-1){sin(cos^(-1)x)}]=(1)/(sqrt(2-x^(2)))

Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

Prove that tan^(-1)(sqrt((1-cos x)/(1+cos x)))=(x)/(2)

Prove that cos^(-1)((sqrt(1+x)+sqrt(1-x))/(2))=(pi)/(4)-(1)/(2)cos^(-1)x

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that ln 2 lt int_(0)^(1)(dx)/(sqrt(1+x^(4))) lt (pi)/2)