Home
Class 12
MATHS
Prove that sin^(-1). ((x + sqrt(1 - x^(2...

Prove that `sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4)`, where `- (1)/(sqrt2) lt x lt(1)/(sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \sin^{-1}\left(\frac{x + \sqrt{1 - x^2}}{\sqrt{2}}\right) = \sin^{-1}(x) + \frac{\pi}{4} \] for \(-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\), we will follow these steps: ### Step 1: Substitute \(x\) with \(\sin \theta\) Let \(x = \sin \theta\). Given the range \(-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\), this implies that \(-\frac{\pi}{4} < \theta < \frac{\pi}{4}\). ### Step 2: Rewrite the left-hand side (LHS) Now substitute \(x\) in the LHS: \[ \sin^{-1}\left(\frac{\sin \theta + \sqrt{1 - \sin^2 \theta}}{\sqrt{2}}\right) \] Using the identity \(\sqrt{1 - \sin^2 \theta} = \cos \theta\), we have: \[ \sin^{-1}\left(\frac{\sin \theta + \cos \theta}{\sqrt{2}}\right) \] ### Step 3: Simplify the expression inside the inverse sine The expression \(\sin \theta + \cos \theta\) can be rewritten using the sine addition formula. We know that: \[ \sin \theta + \cos \theta = \sqrt{2} \left(\sin \theta \cdot \frac{1}{\sqrt{2}} + \cos \theta \cdot \frac{1}{\sqrt{2}}\right) = \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) \] Thus, we can rewrite the LHS as: \[ \sin^{-1}\left(\frac{\sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right)}{\sqrt{2}}\right) = \sin^{-1}\left(\sin\left(\theta + \frac{\pi}{4}\right)\right) \] ### Step 4: Use the property of inverse sine Since \(-\frac{\pi}{4} < \theta < \frac{\pi}{4}\), it follows that: \[ \sin^{-1}\left(\sin\left(\theta + \frac{\pi}{4}\right)\right) = \theta + \frac{\pi}{4} \] ### Step 5: Substitute back for \(\theta\) Recall that \(\theta = \sin^{-1}(x)\). Therefore, we have: \[ \theta + \frac{\pi}{4} = \sin^{-1}(x) + \frac{\pi}{4} \] ### Conclusion Thus, we have shown that: \[ \sin^{-1}\left(\frac{x + \sqrt{1 - x^2}}{\sqrt{2}}\right) = \sin^{-1}(x) + \frac{\pi}{4} \] This proves the required identity. ---

To prove that \[ \sin^{-1}\left(\frac{x + \sqrt{1 - x^2}}{\sqrt{2}}\right) = \sin^{-1}(x) + \frac{\pi}{4} \] for \(-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.3|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Prove that sin^(-1)x+sin^(-1)sqrt(1-x^(2))=(pi)/(2)

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1

Prove that : sin^(-1) (2x sqrt(1-x^(2)))= 2 sin^(-1) x, - 1/(sqrt(2)) le x le 1/(sqrt(2))

Prove that : sin^(-1) (2x sqrt(1-x^(2)) ) = 2 sin^(-1) x , -1/(sqrt(2))le x le 1/(sqrt(2)

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/(2)}=(pi)/(4)+(sin^(-1)x)/(2),0

Prove that sin^(-1) {(sqrt(1 + x) + sqrt(1 - x))/(2)} = (pi)/(4) + (cos^(-1) x)/(2), 0 lt x lt 1

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a

Prove that sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))