Home
Class 12
MATHS
Prove that sin cot^(-1) tan cos^(-1) x =...

Prove that `sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]`

Text Solution

Verified by Experts

We have to prove that
`sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x`
Now, `sin cot^(-1) tan cos^(-1) x = sin cot^(-1) tan tan.^(-1) (sqrt(1 - x^(2)))/(x)`
Also, `sin cosec^(-1) cot tan^(-1) x = sin cosec.^(-1) (1)/(x)`
`= sin (sin^(-1) x) = x`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Prove that : sin cot^(-1) tan cos^(-1) x=x

Prove that sin (cot^(-1) (tan (cos^(-1) x))) = x, x gt 0

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x (x != 0)

Simplify sin cot^(-1)tan cos^(-1)x,x>0

sin[cot^(-1) {tan(cos^(-1)x)}] is equal to

If sin[2cos^(-1){cot(2tan^(-1)x)}]=0,x>0 then x =