Home
Class 12
MATHS
Prove that sin [2 tan^(-1) {sqrt((1 -x)/...

Prove that `sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))`

Text Solution

Verified by Experts

Let `x = cos theta, " where " `theta in [0,pi]`
`rArr y = sin [2 tan^(-1) {sqrt((1 - x)/(1 + x))}]`
`= sin [2 tan^(-1) {sqrt((1 - cos theta)/(1 + cos theta))}]`
`= sin [2 tan^(-1) {sqrt(tan^(2).(theta)/(2))}]`
`= sin [2 tan^(-1) {tan.(theta)/(2)}]`
`= sin theta`
`= sqrt(1 - x^(2))`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Simplify :sin[2tan^(-1)sqrt((1-x)/(1+x))]

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove that (sin^(-1)x)=tan^(-1){x/(sqrt(1-x^(2)))}

Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that tan^(-1) x =sec^(-1) sqrt(1+x^2)

tan^(-1)sqrt((1-x)/(1+x))+sin^(-1)2x sqrt(1-x^(2))=(5 pi)/(12) if x=

Prove that: sin cos^-1 tan sec^-1 x= sqrt(2-x^2)

Prove that 2sin^(-1)x=sin^(-1)[2x sqrt(1-x^(2))]