Home
Class 12
MATHS
Prove that tan^(-1).(1)/(sqrt(x^(2) -1))...

Prove that `tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1`

Text Solution

Verified by Experts

`tan^(-1).(1)/(sqrt(x^(2) -1))`
Let `x = sec theta. " Then " theta = sec^(-1) x`
We have `tan^(-1).(1)/(sqrt(x^(2) -1)) = tan^(-1).(1)/(sqrt(sec^(2) theta -1))`
`= tan^(-1).(1)/(sqrt(sec^(2) theta -1))`
`= tan^(-1).(1)/(sqrt(tan^(2) theta))`
`= tan^(-1).(1)/(sqrt(tan^(2) theta))`
`= tan^(-1). (1)/(tan theta) " " ( :' x gt 1)`
`= tan^(-1) cot theta`
`= tan^(-1) tan ((pi)/(2) - theta)`
`= (pi)/(2) - theta = (pi)/(2) - sec^(-1) x`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

prove that tan^(-1)((x)/(1+sqrt(1-x^(2)))]=(1)/(2)sin^(-1)x

Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

Prove that tan^(-1) x =sec^(-1) sqrt(1+x^2)

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a

Prove that tan^(-1)backslash(sqrt(1+x^(2))-1)/(x)=(1)/(2)tan^(-1)x

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x

if tan^(-1)((sqrt(1+x^(2))-1)/(x))=(pi)/(45) then:

Prove that tan^(-1) ((1-sqrt(x))/(1+sqrt(x))) = pi/4 - tan^(-1) sqrt(x) , "where" x gt 0

Prove that tan^(-1){(x)/(a+sqrt(a^(2)-x^(2)))}=(1)/(2)(sin^(-1)x)/(a),-a

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)