Home
Class 12
MATHS
Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x...

Prove that: `tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/4-1/2\ cos^(-1)x ,\ \ 0

Text Solution

Verified by Experts

Putt `x = cos 2 theta` so that `theta = (1)/(2) cos^(-1) x`
and `2 theta in [0, pi] " or " thteta in [0,(pi)/(2)]`
Then, we have
`L.H.S. = tan^(-1) ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x)))`
`= tan^(-1) ((sqrt(1 + cos 2 theta) - sqrt(1 - cos 2 theta))/(sqrt(1 + cos 2 theta) - sqrt(1 - cos 2 theta)))`
`= tan^(-1) ((sqrt(2 cos^(2) theta) - sqrt(2 sin^(2) theta))/(sqrt(2 cos^(2) theta) + sqrt(2 sin^(2) theta)))`
`= tan^(-1) ((sqrt2 cos theta - sqrt2 sin theta)/(sqrt2 cos theta + sqrt2 sin theta)) " " ( :' theta in [0, (pi)/(2)])`
`= tan^(-1) ((cos theta - sin theta)/(cos theta + sin theta))`
`= tan^(-1) ((1 - tan theta)/(1 + tan theta))`
`= tan^(-1) [tan ((pi)/(4) - theta)] " " ( :' (pi)/(4) - theta in [(-pi)/(4), (pi)/(4)])`
`= (pi)/(4) - theta = (pi)/(4) - (1)/(2) cos^(-1) x = R.H.S.`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x+sqrt(1-x)))]=(pi)/(4)-(1)/(2)cos^(-1)x,quad -(1)/(sqrt(2))<=x<=1

Prove that : cot^(-1) ((sqrt(1+x) -sqrt(1-x))/(sqrt(1+x) +sqrt(1-x))) = pi/4 +1/2 cos^(-1) x

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-sin x))/(sqrt(1+x)-sqrt(1-sin x)))=(pi)/(4)-(1)/(2)cos^(-1),-(1)/(sqrt(2))<=x<=1

Prove that: tan^(^^)(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=pi/4-x/2, if pi

Prove that: (i)tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=(pi)/(4)+(x)/(2)

tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}

The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1-x))) is

Prove that: *cot^(^^)(-1){(sqrt(1+sin x)+sqrt(1-sin x)/(sqrt(1+sin x)-sqrt(1-sin x))}=pi/2-x/2,| ifpil 2

tan^-1 (sqrt(x)+sqrt(a))/(1-sqrt(x)sqrt(a))