Home
Class 12
MATHS
Prove that sin^(-1) cos (sin^(-1) x) + c...

Prove that `sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1`

Text Solution

AI Generated Solution

To prove that \( \sin^{-1}(\cos(\sin^{-1}(x))) + \cos^{-1}(x) = \frac{\pi}{2} \) for \( |x| \leq 1 \), we will break the proof into two cases based on the value of \( x \). ### Step 1: Consider the case when \( 0 \leq x \leq 1 \) 1. **Evaluate \( \sin^{-1}(x) \)**: Let \( \theta = \sin^{-1}(x) \). Then, by definition, \( \sin(\theta) = x \). 2. **Find \( \cos(\theta) \)**: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.3|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

solve sin^(-1) x le cos^(-1) x

Prove that : sin^(-1)x+cos^(-1)x=(pi)/(2), |x| le 1

Prove that : cos (2 sin^(-1) x) = 1-2x^2

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove that : sin^(-1)x+cos^(-1)x=(pi)/(2)

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

prove that [cos(sin^(-1) x)]^(2) = [sin(cos^(-1) x)]^(2) .

Prove that the identities,sin^(-1)cos(sin^(-1)x)+cos^(-1)sin(cos^(-1)x)=(pi)/(2)|x|<=1