Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(...

If `sin^(-1)x+sin^(-1)y=(2pi)/3` and `cos^(-1)x-cos^(-1)y=-pi/3` then the number of values of `(x,y)` is

Text Solution

Verified by Experts

The correct Answer is:
`x = (1)/(2), y = 1`

Given equation are
`sin^(-1) x + sin^(-1) y = (2pi)/(3)`
`cos^(-1) x - cos^(-1) y = (pi)/(3)`
`rArr ((pi)/(2) - sin^(-1) x) - ((pi)/(2) - sin^(-1) y) = (pi)/(3)`
Let `sin^(-1) x = A`
`sin^(-1) y = B`
Then Eqs. (i) and (ii) become
`A + B = (2pi)/(3)`
`A - B = -(pi)/(3)`
Solving Eqs. (iii) and (iv), we get
`A = (pi)/(6), B = (pi)/(2)`
`rArr sin^(-1) x = (pi)/(6), sin^(-1) y = (pi)/(2)`
`rArr x = (1)/(2) and y = 1`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.3|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) and cos^(-1)x-cos^(-1)y=-(pi)/(3) then the number of values of (x,y) is

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :

If sin^(-1)x + sin^(-1)y =(2pi)/3 , then: cos^(-1)x +cos^(-1)y=

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :

If sin^(-1)x+sin^(-1)y=(2pi)/3 , then cos^(-1)x+cos^(-1)y is equal to

If sin^(-1)x+sin^(-1)y=(pi)/(3) and cos^(-1)x+cos^(-1)y=(pi)/(6), find the values of x and y.

If sin^(-1)x+sin^(-1)y=(pi)/(2), "then" cos^(-1)x+cos^(-1)y is equal to