Home
Class 12
MATHS
If alpha in (-(pi)/(2), 0), then find th...

If `alpha in (-(pi)/(2), 0)`, then find the value of `tan^(-1) (cot alpha) - cot^(-1) (tan alpha)`

Text Solution

Verified by Experts

The correct Answer is:
`-pi`

`tan^(-1) (cot alpha) - cot^(-1) (tan alpha)`
`= tan^(-1) ((1)/(tan alpha)) - ((pi)/(2) - tan^(-1) (tan alpha))`
`= -(pi)/(2) + (tan^(-1) ((1)/(tan alpha)) + tan^(-1) (tan alpha))`
`= -(pi)/(2) - (pi)/(2) " " ("as " (-pi)/(2) lt alpha lt 0)`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.3|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If alpha in(-(3 pi)/(2),-pi), then the value of tan^(-1)(cot alpha)-cot^(-1)(tan alpha)+sin^(-1)(sin alpha)+cos^(-1)(cot alpha) is equal to (a)2 pi+alpha(b)pi+alpha(c)0(d)pi-alpha

If tan alpha +cot alpha =a then the value of tan^(4) alpha +cot^(4) alpha=

if tan alpha+cot alpha=p then find the value of a.tan^(2)alpha+cot^(2)alpha b.tan^(3)alpha+cot^(3)alpha

If tan alpha = sqrt3+2 , then the value of tan alpha - cot alpha is

The value of sin^3 alpha ( 1+cot alpha) + cos^3 alpha (1+tan alpha) is equal to

If tan alpha + cot alpha=a , then the value of tan^(4)alpha + cot^(4)alpha is equal to

If tan alpha+cot alpha=2 then

If tan alpha+cot alpha=a, then the value of tan^(4)alpha+cot^(4)alpha is equal to

If tan alpha = sqrt(3) and tan beta = (1)/(sqrt(3)) , then find the value of cot (alpha + beta) .