Home
Class 12
MATHS
Find the maximum value of (sec^(-1) x) (...

Find the maximum value of `(sec^(-1) x) (cosec^(-1) x), x ge 1`

Text Solution

Verified by Experts

The correct Answer is:
`(pi^(2))/(16)`

For `x ge 1, cosec^(-1) x gt 0`
Using A.M. `ge` G.M., we have
`(sec^(-1) x + cosec^(-1) x)/(2) ge sqrt(sec^(-1) x cosec^(-1) x)`
`rArr ((pi//2))/(2) ge sqrt(sec^(-1) x cosec^(-1) x)`
`rArr (pi)/(2) ge sqrt(sec^(-1) x cosec^(-1) x)`
`:. sec^(-1) x cosec^(-1) x le (pi^(2))/(16)`
Thus maximum value of `sec^(-1) x cosec^(-1) x " is " (pi^(2))/(16)`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.3|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of (sec^(-1) x)^(2) + (cosec^(-1) x)^(2)

Sove sec^(-1) x gt cosec^(-1) x

Find the maximum value of x^((1)/(x))

sin(sec^(-1)x+"cosec"^(-1)x)

Find the value of cos(sec^(-1)x+"c o s e c"^(-1)x) , |x|geq1

Is sec^(-1) (-x) = pi - sec^(-1) x , |x| ge 1 ?

Find the value of cos(sec^(-1)x+cos ec^(-1)x),|x|>=1

Prove that : cos(sec^(-1) x+ cosec^(-1) x) =0, |x| ge 1

Write down the value of "cosec"^(-1)x +sec^(-1) x , when x ge 1 .