Home
Class 12
MATHS
Lt(ntooo)[(1)/(1+n^(2))+(2)/(1+n^(2))+.....

`Lt_(ntooo)[(1)/(1+n^(2))+(2)/(1+n^(2))+.............+(n)/(1+n^(2))]`

A

0

B

`-1//2`

C

`1//2`

D

none

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|91 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|116 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

Lt_(n-oo)[(1)/(n^(3))+(2^(2))/(n^(3))+.........+(n^(2))/(n^(3))]=

Lt_(ntooo)[(1)/(3n+1)+(1)/(3n+2)+............+(1)/(3n+n)]=

{:(" "Lt),(n rarr oo):} [(1)/(1-n^(2))+(2)/(1-n^(2))+...+(n)/(1-n^(2))]=

Lt_(x to oo)[(1)/(n^(2)-1)+(2)/(n^(2)-1)+....+(n)/(n^(2)-1)]=

lim_(ntooo)[(n)/(n^(2)+1)+(n)/(2^(2)+n^(2))+.........+(1)/(2n)]

Lt_(x to oo)(sum n)/(1-n^(2))=

Lt_(ntooo){(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+.......+1/(n)}

Lt_(ntooo)[(1^(3))/(n^(4)+1^(4))+(2^(3))/(n^(4)+2^(4))+.........+(1)/(2n)]=

Lt_(ntooo)[(1)/(1+n^(3))+(4)/(8+n^(3))+(9)/(27+n^(3))+.......+(1)/(2n)]=

Lt_(ntooo){(1)/(2n+1)+(1)/(2n+2)+(1)/(2n+3)+..........+(1)/(2n+n)}=