Home
Class 12
MATHS
Find the sum sum(r=1)^(n) r^(2) = (""^(n...

Find the sum `sum_(r=1)^(n) r^(2) = (""^(n)C_(r))/(""^(n)C_(r-1))`

Text Solution

Verified by Experts

The correct Answer is:
`(n(n+1)(n+2))/(6)`

`t_(r)=r^(2)(.^(n)C_(r))/(.^(n)C_(r)-1)`
`=r^(2)(n-r+1)/(r)`
`=r(n+1-r)`
`=(n+1)r-r^(2)`
`:.` Sum `= (n+1)underset(r=1)overset(n)sumr-underset(r=1)overset(n)sumr^(2)`
`=(n+1)(n(n+1))/(2)-(n(n+1)(2n+1))/(6)`
`= (n(n+1))/(6){3(n+1) - (2n+1)}`
`= (n(n+1)(n+2))/(6)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.4|13 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Find the sum sum_(r=1)^(n)r^(2)(^nC_(r))/(n_(C_(r-1)))

If n in N, then sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

Find sum of sum_(r=1)^(n)r.C(2n,r)

Find the sum of sum_(r=1)^(n)(r^(n)C_(r))/(^nC_(r-1))

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

Find the sum sum_(r=0)^n(-1)^r*(""^nC_r)/(""^(r+3)C_r)