Home
Class 12
MATHS
If x^y=e^(x-y), prove that (dy)/(dx)=(lo...

If `x^y=e^(x-y)`, prove that `(dy)/(dx)=(logx)/(1+logx)^2`

Text Solution

Verified by Experts

`"We have "x^(y)=e^(x-y)`
`"or "e^(ylog x)=e^(x-y)" "[becausex^(y)=e^(log x^(y))=e^(y log x)]`
`"or "ylog x = x-y`
`"or y=(x)/(1+log x)`
On differentiating both the sides w.r.t. x, we get
`(dy)/(dx)=((1+log x)xx1-x(0+(1)/(x)))/((1+ log x)^(2))=(log x)/((1+ log x )^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

x(dy)/(dx)=y(logy-logx+1)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

x (dy)/(dx) + y = x logx

y=x^(logx)+(logx)^(x)

If (x^(x)+y^(x))=1," show that "(dy)/(dx)=-{(x^(x)(1+logx)+y^(x)(logy))/(xy^(x-1))}

Solve x(dy)/(dx)=y(logy-logx+1)