Home
Class 12
MATHS
If x y=e^((x-y)), then find (dy)/(dx)...

If `x y=e^((x-y)),` then find `(dy)/(dx)`

Text Solution

Verified by Experts

The correct Answer is:
`(y(x-1))/(x(y+1))`

The given function is `xy=e^((x-y)).`
Taking logarithm on both the sides, we obtain
`log(xy)=log (e^(x-y))`
`log x + log y = (x-y)`
Differentiating both sides with respect to x, we get
`(1)/(x)+(1)/(y)(dy)/(dx)=1-(dy)/(dx)`
`"or "(1+(1)/(y))(dy)/(dx)=1-(1)/(x)`
`therefore" "(dy)/(dx)=(y(x-1))/(x(y+1))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If xy=e^((x-y)), then find (dy)/(dx)

"If "xy=e^((x-y))," then find "(dy)/(dx).

If y=e^(-x^(2)), then find (dy)/(dx) .

If y^(x)=x^(y), then find (dy)/(dx)

If x^(y)=y^(x), then find (dy)/(dx)

x^(y)=y^(x) then find (dy)/(dx)

If y=e^(x)sin x , then find (dy)/(dx)

if y=e^(2x)sin3x then find (dy)/(dx)

If x^(y)=y^(x), then find(dy)/(dx)

If y=sinx+e^(x), Then find (dy)/(dx) .