Home
Class 12
MATHS
"If "y=(tan x)^((tan x)^(tan x))," then ...

`"If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).`

Text Solution

Verified by Experts

The correct Answer is:
`y log y sec^(2)x[log tan x + 1 +(1)/(tan x log tan x)]`

Taking logarithm on both sides, we get
`log y = (tan x)^(tan x)log tan x`
`therefore" "log log y = [ tan x log tan x ] + log log tan x `
Differentiating w.r.t x, we get
`(1)/(y log y )(dy)/(dx)=sec^(2) x log tan x + tan x (sec^(2)x)/(tan x)+(1)/(log tan x )xx(sec^(2)x)/(tan x)`
`therefore" "(dy)/(dx)=y log y sec^(2) x [ log tan x + 1+ //(tan x log tan x )]`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=e^(tan x)+(log x)^(tan x) then find (dy)/(dx)

If y=x^(tan x)+(tan x)^(x) , then find (dy)/(dx)

y=x^(tan(x))+(tan x)^(x) , find (dy)/(dx)

If xy+y^(2)=tan x+y, then find (dy)/(dx)

"If "xy+y^(2)=tan x + y," then find "(dy)/(dx).

If y=(tan x)^((tan x)^((tan x)(tan x))-oo), then prove that (dy)/(dx)=2 at x=(pi)/(4), then prove

If (tan^(-1)x)^(y)+y^(cotx)=1, then find (dy)/(dx).

If y= (tan x )^(sin x ) ,then (dy)/(dx)=

If y=(tan x + cot x)/(tan x - cot x) , then (dy)/(dx)=