Home
Class 12
MATHS
Prove that (d^n)/(dx^n)(e^(2x)+e^(-2x))=...

Prove that `(d^n)/(dx^n)(e^(2x)+e^(-2x))=2^n[e^(2x)+(-1)^n e^(-2x)]`

Text Solution

Verified by Experts

`(d)/(dx)[e^(2x)+e^(-2x)]=2e^(2x)-2e^(-2x)=2^(1)[e^(2x)-e^(-2x)]`
`(d)/(dx^(2))(e^(2x)+e^(-2x))=(d)/(dx)(e^(2x)-e^(-2x))=2^(2)(e^(2x)+e^(-2x))`
`(d^(3))/(dx^(3))(e^(2x)-e^(-2x))=(d)/(dx)2^(2)(e^(2x)+e^(-2x))=2^(3)(e^(2x)-e^(-2x))`
`because" "(d^(n))/(dx^(n))[e^(2x)+e^(-2x)]=2^(n)[e^(2x)+(-1)^(n)e^(-2x)]`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Single)|137 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

int (e^(2x) +e^(-2x))/(e^(x)) dx

(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))

int(e^(2x-1)-e^(1-2x))/(e^(x+2))dx

int(e^(2x)+e^(-2x))/(e^(x)+e^(-x))dx=

int1/((e^(2x)+e^(-2x))^(2))dx=

(d)/(dx)[log((x^(n))/(e^(x)))]=

int (e ^ (2x) -e ^ (- 2x)) / (e ^ (2x) + e ^ (- 2x)) dx

int ((e ^(2x) + e ^(-2x)))/( e^(x)) dx =

int(e^(2x)+1)/(e^(2x)-1)dx=

int (e^(2x)-1)/(e^(2x)+1) dx=?