Home
Class 12
MATHS
If y =sin (sin x) and (d^(2)y)/(dx^(2))+...

If y =sin (sin x) and `(d^(2)y)/(dx^(2))+(dy)/(dx)` tan x + f(x) = 0, then find f(x).

Text Solution

Verified by Experts

The correct Answer is:
`cos^(2)x sin (sin x)`

`(dy)/(dx)=cos (sin x) cos x`
`(d^(2)y)/(dx^(2))=-cos ( sin x) sin x + cos x [-sin (sin x)] cos x`
`therefore" "(d^(2)y)/(dx^(2))+(dy)/(dx)tan x= -c os ( sin x) sin x-cos^(2) x sin (sin x)+cos (sin x )cos x tan x`
`=-cos^(2)x sin (sin x)`
`therefore" "(d^(2)y)/(dx^(2))+(dy)/(dx)tan x + cos^(2)x sin (sin x) =0`
`therefore" "f(x)=cos^(2)x sin (sin x)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Single)|137 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y sin (sin x) and (d^(2)y)/(dx^(2))+(dy)/(dx) tan x + f(x) = 0, then find (x).

If y=sin(sin x), prove that (d^(2)y)/(dx^(2))+tan x(dy)/(dx)cos^(2)x=0

If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx) , then f(y)=

If y=x^(sin x), then find (dy)/(dx)

If y=sin(sin x), prove that (d^(2)y)/(dx^(2))+tan x(dy)/(dx)+y cos^(2)x=0

sin2x(dy)/(dx)-y=tan x

If y= sin (cos (tan x)) ,then (dy)/(dx) =

If y=(cos x-sin x)/(cos x+sin x) then ((d^(2)y)/(dx^(2)))/((dy)/(dx))=

If y=x^(sin x), x>0 , find (dy)/(dx)

(dy) / (dx) tan y = sin (x + y) + sin (xy)