Home
Class 12
MATHS
If x=acos^3theta,y=bsin^3theta,fin d(d^3...

If `x=acos^3theta,y=bsin^3theta,fin d(d^3y)/(dx^3)` at `theta=0.`

Text Solution

Verified by Experts

The correct Answer is:
Does not exist

`x=acos^(3) theta, y = b sin^(3)theta`
`y_(1)=(dy)/(dx)=(3b sin^(2) theta cos theta)/(-3a cos^(2) theta sin theta)`
`=-(b)/(a) tan theta, if sin theta ne 0, cos theta ne 0`
Therefore, `y_(1)` does not exist a `theta = 0.`
Hence, `y_(2) and y_(3)` do not exist at `theta=0.`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Single)|137 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=a cos^(3)theta,y=b sin^(3)theta, find (d^(3)y)/(dx^(3)) at theta=0

If x=a cos^(3)theta,y-b sin^(3)theta, find (d^(3)y)/(dx^(3)) at theta=0

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

If x=bcos^(3)theta,y=asin^(3)theta," then "(dy)/(dx)=

If x=asec^3theta and y=atan^3theta , find (dy)/(dx) at theta=pi/3

If x=a sec^(3)theta,y=atan^(3)theta, find (d^(2)y)/(dx^(2)) at theta=(pi)/(4)

If x=sintheta,y=sin^(3)theta then (d^(2)y)/(dx^(2)) at theta=(pi)/(2) is . . .

If x=a sec^(3)theta and y=a tan^(3)theta, find (dy)/(dx) at theta=(pi)/(3)

If x=a sec^(3)theta and y=a tan^(3)theta, find (dy)/(dx) at theta=(pi)/(3)

If x=a sec^(3)theta and y=a tan^(3)theta, find (dy)/(dx) at theta=(pi)/(3)