Home
Class 12
MATHS
Let f:""(1,""1)vecR be a differentiable ...

Let `f:""(1,""1)vecR` be a differentiable function with `f(0)""=""1""a n d""f'(0)""=""1` . Let `g(x)""=""[f(2f(x)""+""2)]^2` . Then `g'(0)""=` (1) `4` (2) 0 (3) `2` (4) 4

A

-2

B

4

C

-4

D

0

Text Solution

Verified by Experts

`g'(x)=2[f(2f(x)+2)][(d)/(dx)(f(2f(x)+2))]`
`=2[f(2f(x)+2)][f'(2+f(x)+2)xx2f'(x)]`
`rArr" "g'(0)=2f(2f(0)+2)f'(2f(0)+2)2f'(0)`
`=4f(0)[f'(0)]^(2)`
`4(-1)(1)=-4`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answers Type|3 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Numerical)|41 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f:""(1,""1) rarr R be a differentiable function with f(0)""=""-1" "a n d" "f'(0)""=""1 . Let g(x)""=""[f(2f(x)""+""2)]^2 . Then g'(0)""= (1) 4 (2) 0 (3) 2 (4) 4

Let f : (-1,1) to R be a differentiabale function with f(0) = -1 and f'(0) = 1. Let g(x) = [f(2f(x)+2)]^(2) , then g'(0)=

Let f : (-1,1) to R be a differentiable function with f(0) =-1 and f'(0)=1 Let g(x)= [f(f(2x)+1)]^2 . Then g'(0)=

Let f:(-1,1)rarr R be a differentiable function with f(0)=-1 and f'(0)=1. Let g(x)=[f(2f(x)+2)]^(2)* Then g'(0)*-4(b)0(c)-2 (d) 4

Let f : (-5,5)rarrR be a differentiable function of with f(4) = 1, f'(4)=1, f(0) = -1 and f'(0) = If g(x)=(f(2f^(2)(x)+2))^(2), then g'(0) equals