Home
Class 12
MATHS
If y="sec"(tan^(-1)x), then (dy)/(dx) at...

If `y="sec"(tan^(-1)x),` then `(dy)/(dx)` at `x=1` is equal to: `1/(sqrt(2))` (b) `1/2` (c) 1 (d) `sqrt(2)`

A

`1//2`

B

1

C

`sqrt(2)`

D

`1sqrt(2)`

Text Solution

Verified by Experts

`y=sec(tan^(-1)x)`
`rArr" "(dy)/(dx)=sec (tan^(-1)x)cdottan (tan^(-1)x)cdot(1)/(1+x^(2))`
`rArr" "((dy)/(dx))_(x=1)=sec((pi)/(4))tan((pi)/(4))(1)/(1+1)=(1)/(sqrt(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answers Type|3 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Numerical)|41 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=sec(tan^(-1)x) ,then (dy)/(dx) at x=1 is equal to (1)(1)/(2)(2)1(3)sqrt(2)(4)(1)/(sqrt(2))

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

If y=sqrt((1-x)/(1+x)) , then (1-x^(2))(dy)/(dx)+y is equal to

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

If x=(1-sqrt(y))/(1+sqrt(y)) then (dy)/(dx) is equal to

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1 is equal to 2b 1c.-2d.-1