Home
Class 12
MATHS
Let f:(0,oo)->R be a differentiable func...

Let `f:(0,oo)->R` be a differentiable function such that `f'(x)=2-f(x)/x` for all `x in (0,oo)` and `f(1)=1`, then

A

`underset(xrarr0^(+))limf'((1)/(x))=1`

B

`underset(xrarr0^(+))limxf((1)/(x))=2`

C

`underset(xrarr0^(+))limx^(2)f'(x)=0`

D

`|f(x)|le2" for all "x in (0,2)`

Text Solution

Verified by Experts

`f'(x)+(f(x))/(x)=2`
`rArr" "xf'(x)+f(x)=2x`
`rArr" "int d(x.f(x))=int 2xdx`
`rArr" "xf(x)=x+(c)/(x)" "(c ne 0 as f(1) ne1)`
`underset(xrarr0^(+))limf'((1)/(x))=underset(xrarr0^(+))lim(1-cx^(2))=1`
`underset(xrarr0^(+))limxf((1)/(x))=underset(xrarr0^(+))lim(1+cx^(2))=1`
`underset(xrarr0^(+))limx^(2)f'(x)=underset(xrarr0^(+))lim(x^(2)-c)=-c ne 0`
`underset(xrarr0^(+))limf(x)=oo or -oo" so option (4) is incorrect "`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise JEE Previous Year|15 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f:(0,oo)rarr R be a differentiable function such that f'(x)=2-(f(x))/(x) for all x in(0,oo) and f(1)=1, then

If f:R rarr R is a differentiable function such that f(x)>2f(x) for all x in R and f(0)=1, then

if f:R rarr R is a differentiable function such that f'(x)>2f(x) for all x varepsilon R, and f(0)=1, then

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_(1)^(x)f(t)dt=3xf(x)-x^(3) for all x>=1, then the value of f(2) is

Let f:R rarr R be a twice differentiable function such that f(x+pi)=f(x) and f'(x)+f(x)>=0 for all x in R. show that f(x)>=0 for all x in R .

Let f:[0,oo)rarr R be a function satisfying f(x)e^(f(x))=x, for all x in[0,oo). Prove taht