Let `f:(0,oo)->R` be a differentiable function such that `f'(x)=2-f(x)/x` for all `x in (0,oo)` and `f(1)=1`, then
A
`underset(xrarr0^(+))limf'((1)/(x))=1`
B
`underset(xrarr0^(+))limxf((1)/(x))=2`
C
`underset(xrarr0^(+))limx^(2)f'(x)=0`
D
`|f(x)|le2" for all "x in (0,2)`
Text Solution
Verified by Experts
`f'(x)+(f(x))/(x)=2` `rArr" "xf'(x)+f(x)=2x` `rArr" "int d(x.f(x))=int 2xdx` `rArr" "xf(x)=x+(c)/(x)" "(c ne 0 as f(1) ne1)` `underset(xrarr0^(+))limf'((1)/(x))=underset(xrarr0^(+))lim(1-cx^(2))=1` `underset(xrarr0^(+))limxf((1)/(x))=underset(xrarr0^(+))lim(1+cx^(2))=1` `underset(xrarr0^(+))limx^(2)f'(x)=underset(xrarr0^(+))lim(x^(2)-c)=-c ne 0` `underset(xrarr0^(+))limf(x)=oo or -oo" so option (4) is incorrect "`
Topper's Solved these Questions
DIFFERENTIATION
CENGAGE|Exercise Matrix Match Type|1 Videos
DIFFERENTIATION
CENGAGE|Exercise Numerical Value Type|3 Videos
DIFFERENTIATION
CENGAGE|Exercise JEE Previous Year|15 Videos
DIFFERENTIAL EQUATIONS
CENGAGE|Exercise Question Bank|25 Videos
DOT PRODUCT
CENGAGE|Exercise DPP 2.1|15 Videos
Similar Questions
Explore conceptually related problems
Let f:(0,oo)rarr R be a differentiable function such that f'(x)=2-(f(x))/(x) for all x in(0,oo) and f(1)=1, then
If f:R rarr R is a differentiable function such that f(x)>2f(x) for all x in R and f(0)=1, then
if f:R rarr R is a differentiable function such that f'(x)>2f(x) for all x varepsilon R, and f(0)=1, then
Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_(1)^(x)f(t)dt=3xf(x)-x^(3) for all x>=1, then the value of f(2) is
Let f:R rarr R be a twice differentiable function such that f(x+pi)=f(x) and f'(x)+f(x)>=0 for all x in R. show that f(x)>=0 for all x in R .
Let f:[0,oo)rarr R be a function satisfying f(x)e^(f(x))=x, for all x in[0,oo). Prove taht
CENGAGE-DIFFERENTIATION-Multiple Correct Answers Type