Home
Class 12
MATHS
"If "xy=e^((x-y))," then find "(dy)/(dx)...

`"If "xy=e^((x-y))," then find "(dy)/(dx).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( xy = e^{(x - y)} \) and find \( \frac{dy}{dx} \), we will use implicit differentiation. Here are the steps: ### Step 1: Differentiate both sides with respect to \( x \) We start with the equation: \[ xy = e^{(x - y)} \] Differentiating both sides with respect to \( x \): \[ \frac{d}{dx}(xy) = \frac{d}{dx}(e^{(x - y)}) \] ### Step 2: Apply the product rule on the left side Using the product rule on the left side: \[ \frac{d}{dx}(xy) = x \frac{dy}{dx} + y \] ### Step 3: Differentiate the right side using the chain rule For the right side, we apply the chain rule: \[ \frac{d}{dx}(e^{(x - y)}) = e^{(x - y)} \left( \frac{d}{dx}(x - y) \right) = e^{(x - y)} \left( 1 - \frac{dy}{dx} \right) \] ### Step 4: Set the derivatives equal to each other Now we have: \[ x \frac{dy}{dx} + y = e^{(x - y)} \left( 1 - \frac{dy}{dx} \right) \] ### Step 5: Expand and rearrange the equation Expanding the right side: \[ x \frac{dy}{dx} + y = e^{(x - y)} - e^{(x - y)} \frac{dy}{dx} \] Now, rearranging the equation to isolate terms involving \( \frac{dy}{dx} \): \[ x \frac{dy}{dx} + e^{(x - y)} \frac{dy}{dx} = e^{(x - y)} - y \] ### Step 6: Factor out \( \frac{dy}{dx} \) Factoring \( \frac{dy}{dx} \) from the left side: \[ \frac{dy}{dx} (x + e^{(x - y)}) = e^{(x - y)} - y \] ### Step 7: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{e^{(x - y)} - y}{x + e^{(x - y)}} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{e^{(x - y)} - y}{x + e^{(x - y)}} \] ---

To solve the equation \( xy = e^{(x - y)} \) and find \( \frac{dy}{dx} \), we will use implicit differentiation. Here are the steps: ### Step 1: Differentiate both sides with respect to \( x \) We start with the equation: \[ xy = e^{(x - y)} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=e^(-x^(2)), then find (dy)/(dx) .

If x^(y)=e^(x-y), then find (dy)/(dx)atx=1

xy=(x+y)^(2) then find (dy)/(dx)

If y=sinx+e^(x), Then find (dy)/(dx) .

If xy+y^(2)=tan x+y, then find (dy)/(dx)

If sec (x+y) = xy, then find (dy)/(dx)

If xy=e^(x-y), find (dy)/(dx)

"If "xy+y^(2)=tan x + y," then find "(dy)/(dx).

If y=e^(1+xy)," then "(dy)/(dx)=

If y=e^(x^(x)) , find (dy)/(dx)