Home
Class 12
MATHS
"If "y^(x)=x^(y)," then find "(dy)/(dx)....

`"If "y^(x)=x^(y)," then find "(dy)/(dx).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y^x = x^y \) and find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \ln(y^x) = \ln(x^y) \] ### Step 2: Use the properties of logarithms Using the property of logarithms that states \( \ln(a^b) = b \ln(a) \), we can rewrite the equation: \[ x \ln(y) = y \ln(x) \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides of the equation with respect to \( x \). We will use the product rule on both sides. For the left side: \[ \frac{d}{dx}(x \ln(y)) = \frac{d}{dx}(x) \cdot \ln(y) + x \cdot \frac{d}{dx}(\ln(y)) \] Using the chain rule for \( \ln(y) \): \[ \frac{d}{dx}(\ln(y)) = \frac{1}{y} \cdot \frac{dy}{dx} \] So the left side becomes: \[ \ln(y) + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} \] For the right side: \[ \frac{d}{dx}(y \ln(x)) = \frac{d}{dx}(y) \cdot \ln(x) + y \cdot \frac{d}{dx}(\ln(x)) \] Again using the chain rule for \( \ln(x) \): \[ \frac{d}{dx}(\ln(x)) = \frac{1}{x} \] So the right side becomes: \[ \frac{dy}{dx} \cdot \ln(x) + y \cdot \frac{1}{x} \] ### Step 4: Set the derivatives equal to each other Now we have: \[ \ln(y) + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} = \frac{dy}{dx} \cdot \ln(x) + y \cdot \frac{1}{x} \] ### Step 5: Rearrange the equation to isolate \( \frac{dy}{dx} \) Rearranging gives: \[ x \cdot \frac{1}{y} \cdot \frac{dy}{dx} - \frac{dy}{dx} \cdot \ln(x) = \frac{1}{x}y - \ln(y) \] Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx} \left( \frac{x}{y} - \ln(x) \right) = \frac{y}{x} - \ln(y) \] ### Step 6: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\frac{y}{x} - \ln(y)}{\frac{x}{y} - \ln(x)} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{y - x \ln(y)}{x - y \ln(x)} \] ---

To solve the equation \( y^x = x^y \) and find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \ln(y^x) = \ln(x^y) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

y=x^(y)" then find "(dy)/(dx)

If y=x^(x^(x)), "then find "(dy)/(dx) .

x^(y)=y^(x) then find (dy)/(dx)

If x^(y)+y^(x)=a^(b), then find (dy)/(dx)

If x^(y)=y^(x), then find (dy)/(dx)

If y=x^(x^(x)), then find (dy)/(dx)

If x^(y)=y^(x), then find(dy)/(dx)

If x^(y)+y^(x)=a^(b) then find (dy)/(dx) .

If x(x)+y^(y)=1 then find (dy)/(dx) .

If y=x^(xsin x) , then find (dy)/(dx)