Home
Class 11
MATHS
prove that (veca.hati)(vecaxxhati)+(veca...

prove that `(veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0`

Text Solution

Verified by Experts

Let `veca = a_(1) hati + a_(2)hatj + a_(3) hatk`1, therefore,
`veca. Hati = (a_(1) hati = a_(2) and veca . Hatk = a_(3)`
`and vecaxxhati = (a_(1)hati+a_(2)hat j + a_(3) hatk) xx hati = a_(2)hatk + a_(3) hatj` ,
`(veca . hati ) (vecaxx hati) + (veca . hatj) (veca xx hatj) + (veca. hatk) (veca xx veck)`
`-a_(1)a_(2)hatk + a_(1)a_(3)hatj + a_(1)a_(2) hatk +a_(3)a_(2)hati`
`+a_(3)a_(2) hati -a_(3)a_(1)hati`
`vec0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.3|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|247 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise JEE Previous Year (Multiple Question)|11 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1316 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|320 Videos

Similar Questions

Explore conceptually related problems

(veca.hati)(vecaxxhati)+(veca.hatj)+(veca.hatk)(vecaxxhatk) is equal to

Assertion: Let veca and vecb be any two vectors (vecaxxhati).(vecbxxhati)+(vecaxxhatj).(vecxxhatj)+(vecaxxhatk).(vecbxxhatk)=2veca.vecb., Reason: (veca.hati)(vecb.hati)+(veca.hatj)(vecb.hatj)+(veca.hatk)(vecb.hatk)=veca.vecb. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

prove that (veca.(vecbxxhati)hati(veca.(vecbxxhatj))hatj+ (veca.(vecbxxhatk))hatk=vecaxxvecb

prove that (veca.(vecbxxhati)hati+(veca.(vecbxxhatj))hatj+ (veca.(vecbxxhatk))hatk=vecaxxvecb

{veca.(vecbxxhati)}hati+{veca.(vecbxxhatj)}hatj+{veca.(vecbxxhatk)}hatk=

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

(veca hati)hati + (veca hatj)hatj + (veca hatk) hatk is value of :

If veca=hati+hatj+hatk and vecb=hati-hatj then the vector (veca.hati)hati+(veca.hatj)hatj+(veca.hatk)hatk,(vecb.hati)hati+(vecb.hatj)hatj+(vecb.hatk)hatk and hati+hatj-2hatk (A) are mutually perpendicular (B) are coplanasr (C) form a parallelopiped of volume 6 units (D) form as parallelopiped of volume 3 units

Prove that for any vector veca , veca=(veca. hati)hati+(veca. hatj)hatj+(veca. hatk)hatk ,

If veca is any vector and hati,hatj and hatk are unit vectors along the x,y and z directions then hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck)= (A) veca (B) -veca (C) 2veca (D) 0