Home
Class 11
MATHS
Vectors vecx,vecy,vecz each of magnitude...

Vectors `vecx,vecy,vecz` each of magnitude `sqrt(2)` make angles of `60^0` with each other. If `vecxxx(vecyxx(veczxxvecx)=vecb nd vecxxxvecy=vecc, find vecx, vecy, vecz` in terms of `veca,vecb and vecc`.

A

`1/2[(veca-vecb)xx vecc+ (veca + vecb)]`

B

`1/2[(veca+vecb)xx vecc+ (veca - vecb)]`

C

`1/2[-(veca+vecb)xx vecc+ (veca + vecb)]`

D

`1/2[(veca+vecb)xx vecc- (veca + vecb)]`

Text Solution

Verified by Experts

The correct Answer is:
d

Given that `|vecx|= |vecy|=|vecz|=sqrt2` and they are inclined at an angle of `60^(@)` with each other.
`vecx.vecy=vecy.vecz=vecz.vecx=sqrt2.sqrt2cos 60^(@)=1 vecx xx (vecyxxvecz)=veca`
`or (vecx.vecz)vecy-(vecx.vecy)vecz=vecaor vecy-vecz=veca` (i)
similarly `vecyxx(vecz xxvecx)=vecb Rightarrow vecz-vecx=vecb`
`vecy=veca+vecz,vecx=vecz-vecb`
Now , ` vecx, xx vecy=vecc`
` Rightarrow (vecz - vecb) xx (vecz + veca) = vecc`
` or vecz xx (veca xx vecb) = vecc + (vecb xxx veca)`
` or (veca + vecb) xx {vecz xx (veca + vecb)} `
`= (veca xx vecb) xx vecc+ (veca +vecb) xx (vecbxxveca)`
`or (veca + vecb) ^(2)vecz - {(veca + vecb).vecz} (veca + vecb)`
`= (veca + vecb) xx vecc + |veca|^(2)vecb-|vecb|^(2)veca`
`+ (veca.vecb) (vecb.veca)`
`Now , (i) Rightarrow |veca|^(2)= |vecy-vecz|^(2)=2 +2-2=2`
similarly , (ii) `Rightarrow |vecb|^(2)=2`
Also (i) and (ii) `Rightarrow veca+vecb=vecy-vecx`
`Rightarrow |veca+vecb|^(2)=2`
`Also (veca +vecb).vecz= (vecy -vecx).vecz = vecy.vecz-vecx.vecz`
1-1=0
`and veca.vecb= (vecy.vecz). (vecz-vecx)`
` =vecy.vecz-vecx.vecy-|vecz|^(2)+vecx.vecz= -1`
Thus from (v) , we have
`2vecz=(veca+vecb)xxvecc+2(vecb-veca)-(vecb-veca)`
`or vecz= (1//2)[(veca + vecb) xx vecc + vecb-veca]`
`vecy= veca+vecz= (1//2)[(veca+vecb)xxvecc+vecb+veca]`
`and vecx=vecz-vecb=(1//2)[(veca+vecb)xxvecc-(veca+vecb)]`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise JEE Previous Year (Single Question)|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise JEE Previous Year (Multiple Question)|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1316 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|320 Videos

Similar Questions

Explore conceptually related problems

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx(vecyxxvecz)=veca ,vecyxx(veczxxvecx) =vecb and vecx xxvecy=vecc , find vecx, vecy, vecz in terms of veca,vecb and vecc .

If vecx xxvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma .

If vector veca,vecb,vecc are coplanar then find the value of vecc in terms of veca and vecb

If the three vectors veca,vecb,vecc are non coplanar express each of vecbxxvecc, veccxxveca, vecaxxvecb in terms of veca,vecb,vecc .

If vecx.veca=0vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

If vecA=2veci-3vecj+7veck, vecB=veci+2veck and vecC=vecj-veck find vecA.(vecBxxvecC) .

Let vecx, vecy and vecz be unit vectors such that vecx+vecy+vecz=veca, vecx xx(vecyxxvecz)=vecb, (vecx xxvecy)xxvecz=vecc, veca.vecx=3/2, veca.vecy=7/4 and \|veca|=2 . Find vecx,vecy,vecz in terms of veca,vecb,vecc.

Let vecx, vecy and vecz be three vectors each of magnitude sqrt(2) and the angle between each pair of them is pi/3 . If veca is a non-zero vector perpendicular to vecx and vecyxxvecz and vecb is a non zero vector perpendicular to vecy and veczxxvecx then

Let vecx, vecy and vecz be three vectors each of magnitude sqrt2 and the angle between each pair of them is pi/3 if veca is a non-zero vector perpendicular to vecx and vecy xx vecz and vecb is a non-zero vector perpendicular to vecy and vecz xx vecx , then

Let vecx, vecy and vecz be three vectors each of magnitude sqrt2 and the angle between each pair of them is pi/3 if veca is a non-zero vector perpendicular to vecx and vecy xx vecz and vecb is a non-zero vector perpendicular to vecy and vecz xx vecx , then

CENGAGE-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercise
  1. Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + ...

    Text Solution

    |

  2. Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + ...

    Text Solution

    |

  3. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  4. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  5. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  6. If vecxxxvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 an...

    Text Solution

    |

  7. If vecxxxvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 an...

    Text Solution

    |

  8. If vecxxxvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 an...

    Text Solution

    |

  9. Given two orthogonal vectors vecA and VecB each of length unity. Let v...

    Text Solution

    |

  10. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  11. Given two orthogonal vectors vecA and VecB each of length unity. Let v...

    Text Solution

    |

  12. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  13. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  14. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  15. Consider a triangular pyramid ABCD the position vectors of whone agula...

    Text Solution

    |

  16. Consider a triangular pyramid ABCD the position vectors of whone agula...

    Text Solution

    |

  17. Consider a triangular pyramid ABCD the position vectors of whone agula...

    Text Solution

    |

  18. Vertices of a parallelogram taken in order are A, ( 2,-1,4) , B (1,0,-...

    Text Solution

    |

  19. Vertices of a parallelogram taken in order are A, ( 2,-1,4) , B (1,0,-...

    Text Solution

    |

  20. Vertices of a parallelogram taken in order are A, ( 2,-1,4) , B (1,0,-...

    Text Solution

    |