Home
Class 11
PHYSICS
The force required to move a body up a r...

The force required to move a body up a rough inclined plane is double the force required to prevent the body from sliding down the plane. The coefficient of friction when the angle of inclination of the plane is `60^(@)` is

A

`(1)/(sqrt2)`

B

`(1)/(sqrt3)`

C

`(1)/(2)`

D

`(1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
B

`F_("Up")=mg(sintheta +mu_(k)cos theta)`,
`F_("down")=mg(sin theta-mu_(k)cos theta)`.
Promotional Banner

Topper's Solved these Questions

  • LAW OF MOTION

    NARAYNA|Exercise EXERCISE - II (C.W)(PULLING/PUSHING A BODY)|3 Videos
  • LAW OF MOTION

    NARAYNA|Exercise EXERCISE - II (C.W)(CIRCULAR MOTION)|6 Videos
  • LAW OF MOTION

    NARAYNA|Exercise EXERCISE - II (C.W)(MOTION ON A HORIZONTAL ROUGH SURFACE)|10 Videos
  • KINETIC THEORY OF GASES

    NARAYNA|Exercise LEVEL-III(C.W)|52 Videos
  • MATHEMATICAL REVIEW & PHYSICAL WORLD

    NARAYNA|Exercise C.U.Q|13 Videos

Similar Questions

Explore conceptually related problems

The force required just to move a body up an inclined plane is double the force required just to prevent the body sliding down. If the coefficient of friction is 0.25 , the angle of inclination of the plane is

The force required to just move a body up the inclined plane is double the force required to just prevent the body from sliding down the plane. The coefficient of friction is mu . If theta is the angle of inclination of the plane than tan theta is equal to

The force F_(1) required to just moving a body up an inclined plane is double the force F_(2) required to just prevent the body from sliding down the plane. The coefficient of friction is mu . The inclination theta of the plane is :

In the situation shown, the force required to just move a body up an inclined plane is double the force required to just prevent the body from sliding down the plane. The coefficient of friction between the block and plane is mu . The angle of inclination of the plane from horizontal is given by :

The minimum force required to move a body up on an inclined plane is three times the minimum force required to prevent it from sliding down the plane. If the coefficient of friction between the body and the inclined plane is 1/(2sqrt3) the angle of the inclined plane is

The minimum force required to move a body up an inclined plane of inclination 30° is found to be thrice the minimum force required to prevent if from sliding down the plane. The co-efficient of friction between the body and the plane is -

The force required to just move a body up an inclined plane is double the force the required prevent it from sliding down. If phi is angle of friction and theta is the angle which incline makes with the horizontal then,

The acceleration of a moving body down a rough inclined plane is

The force F_(1) that is necessary to move a body up an inclined plane is double the force F_(2) that is necessary to just prevent it form sliding down, then: