Home
Class 12
MATHS
If int1/(x+x^5)dx=f(x)+c ,t h e ne v a l...

If `int1/(x+x^5)dx=f(x)+c ,t h e ne v a l u a t eint(x^4)/(x+x^5)dxdot`

Text Solution

Verified by Experts

The correct Answer is:
`logx-f(x)+C`

`int(x^(4)dx)/(x+x^(5))=int((x^(4)+1)dx)/(x+x^(5))-intdx/(x+x^(5))`
`=int((x^(4)+1)dx)/(x(1+x^(4)))-intdx/(x+x^(5))`
`=intdx/x-intdx/(x+x^(5))`
`=logx-f(x)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.2|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|25 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int_(1)^( If )(1)/(x+x^(5))dx=f(x)+c, then evaluate int(x^(4))/(x+x^(5))dx

int e^(x^5) x^4 dx

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

I fx+1/x=2,t h e p r i n c i p a l v a l u e o f sin^(-1)x is

Show that int e^(x)[f(x)+f'(x)]dx=e^(x).f(x)+c Hence, evaluate: int e^(x)((2+sin2x)/(1+cos2x))dx

If int(e^(x)-1)/(e^(x)+1)dx=f(x)+C, then f(x) is equal to

IfI_n=int_x^pix^nsinx dx ,t h e n fin d t h e v a l u eof I_5+20 I_3dot

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

If int(5x^(4)+4x^(5))/((x^(5)+x+1)^(2))dx=f(x)+C , then the value of (1)/(f(1)) is

If u and v are two functions of x then prove that : int uv dx = u int v dx - int [ (du)/(dx) int v dx ] dx Hence, evaluate int x e^(x) dx