Home
Class 12
MATHS
Evaluate int tan^(2)x sin^(2)xdx...

Evaluate `int tan^(2)x sin^(2)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \tan^2 x \sin^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \tan^2 x \sin^2 x \, dx \] Recall that \( \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \). Therefore, we can rewrite the integral as: \[ \int \frac{\sin^2 x}{\cos^2 x} \sin^2 x \, dx = \int \frac{\sin^4 x}{\cos^2 x} \, dx \] ### Step 2: Use the identity for \(\sin^2 x\) Using the identity \( \sin^2 x = 1 - \cos^2 x \), we can express \(\sin^4 x\) as: \[ \sin^4 x = (1 - \cos^2 x)^2 = 1 - 2\cos^2 x + \cos^4 x \] Thus, the integral becomes: \[ \int \frac{1 - 2\cos^2 x + \cos^4 x}{\cos^2 x} \, dx \] ### Step 3: Simplify the integral Now, we can split the integral: \[ \int \left( \frac{1}{\cos^2 x} - 2 + \cos^2 x \right) \, dx \] This simplifies to: \[ \int \sec^2 x \, dx - 2 \int dx + \int \cos^2 x \, dx \] ### Step 4: Evaluate each integral 1. The integral of \( \sec^2 x \) is: \[ \int \sec^2 x \, dx = \tan x \] 2. The integral of \( -2 \) is: \[ -2 \int dx = -2x \] 3. For \( \int \cos^2 x \, dx \), we can use the identity: \[ \cos^2 x = \frac{1 + \cos 2x}{2} \] Thus, \[ \int \cos^2 x \, dx = \int \frac{1 + \cos 2x}{2} \, dx = \frac{1}{2} \int dx + \frac{1}{2} \int \cos 2x \, dx \] Evaluating this gives: \[ = \frac{x}{2} + \frac{1}{4} \sin 2x \] ### Step 5: Combine all parts Now, we can combine all parts: \[ \int \tan^2 x \sin^2 x \, dx = \tan x - 2x + \left( \frac{x}{2} + \frac{1}{4} \sin 2x \right) + C \] This simplifies to: \[ \tan x - \frac{3x}{2} + \frac{1}{4} \sin 2x + C \] ### Final Answer Thus, the final answer is: \[ \int \tan^2 x \sin^2 x \, dx = \tan x - \frac{3x}{2} + \frac{1}{4} \sin 2x + C \]

To evaluate the integral \( \int \tan^2 x \sin^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \tan^2 x \sin^2 x \, dx \] Recall that \( \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \). Therefore, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.1|9 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int tan^(m)x sec^(2)xdx

Evaluate: int tan^(3)x sec^(2)xdx

Evaluate: int sin^(2)x cos^(2)xdx

Evaluate: int x tan^(2)xdx

Evaluate: (i) int tan^(3)x sec^(2)xdx (ii) int tan x sec^(4)xdx

Evaluate: (i) int tan^(n)x sec^(2)xdx (ii) int tan^(2)x sec^(4)xdx( iii) int sec^(4)xdx

Evaluate: (i) int tan^(3)x sec^(2)xdx( ii) int((log x)^(3))/(x)dx

Evaluate: int sin^(2)x cos^(5)xdx

Evaluate: int sin^(3)x cos^(2)xdx

Evaluate: int x^(2)sin^(2)xdx