Home
Class 12
MATHS
Evaluate intsin^(3)x cos^(2)x dx...

Evaluate `intsin^(3)x cos^(2)x dx`

Text Solution

Verified by Experts

The correct Answer is:
` -(cos^(3))/(3)+(cos^(5)x)/(5) +C`

[Here, power of `sinx` is odd positive integer. Therefore, put `z= cos x.`]
Let ` z=cos x.` Then `dz= -sinx dx`. Now,
`=intsin^(3)x cos^(2)x dx=int sin^(2)x cos^(2)x sinx dx`
`= int (1-cos^(2)x)cos^(2)x sinx dx`
`int(1-z^(2))z^(2)(-dz)`
`=-int(z^(2)-z^(4))dz`
`=-((z^(3))/(3)-(z^(5))/(5))+C= - (cos^(3))/(3)+(cos^(5)x)/(5) +C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.3|16 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

intsin^(4)x cos^(3)xdx=

intsin^(2)x.cos^(2)xdx=

Evaluate: ( i int(sin^(3)x-cos^(3)x)/(sin^(2)x cos^(2)x)dx (ii) int(5cos^(3)x+6sin^(3)x)/(2sin^(2)x cos^(2)x)dx

Find intsin^(3)x cos^(5)x dx .

Evaluate intsin3xcos5x\ dx

Evaluate: int x^(3)cos x^(2)dx

Find intsin^(3)x cos x dx .

Find intsin^3x cos (x/2) dx

Evaluate : intsin4x.e^(tan^(2)x)dx

Evaluate: (i) intsin^(-1)(cosx) dx , 0lt=xlt=pi (ii) inttan^(-1){sqrt(((1-cos2x)/(1+cos2x)))} dx , 0