Home
Class 12
MATHS
Evaluate int[f(x)g^(n)(x)-f^(n)(x)g(x)]...

Evaluate `int[f(x)g^(n)(x)-f^(n)(x)g(x)]dx`

Text Solution

Verified by Experts

The correct Answer is:
`f(x)g'(x)-f'(x)g(x)+C`

`int[f(x)g^(n)(x)-f^(n)(x)g(x)]dx`
`=intf(x)g^(n)(x)dx-int f^(n)(x)g(x)dx`
` =(f(x)g'(x)-int f'(x)g'(x)dx)-(g(x)f'(x)-int g'(x)f'(x)dx)`
`=f(x)g'(x)-f'(x)g(x)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.8|7 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int[f(x)g'(x)-f'(x)g(x)]dx

The value of int[f(x)g'(x)-f'(x)g(x)]dx is equal to

The value of int[f(x)]^(n)f'(x)dx=

If f(x) and g(x) are two continuous functions defined on [-a,a], then the value of int_(-a)^(a){f(x)+f(-x)}{g(x)-g(-x)}dx is

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

Evaluate: if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx

int{f(x)g'(x)-f'g(x)}dx equals