Home
Class 12
MATHS
If int x^2e^(-2x)= e^(-2x)(ax^2+bx+c)+d ...

If `int x^2e^(-2x)= e^(-2x)(ax^2+bx+c)+d` then

A

`a= -(1)/(2)`

B

`b =(1)/(2)`

C

`c= -(1)/(4)`

D

`d in R`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`intx^(2)e^(-2x)dx=e^(-2x)(ax^(2)+bx+c)+d`
Differentiating both sides, we get
`x^(2)e^(-2x)=e^(-2x)(2ax+b)+(ax^(2)+bx+c)(-2e^(-2x))`
`=e^(-2x)(-2ax^(2)+2(a-b)x+b-2c)`
`or a=(-1)/(2),2(a-b)=0,b-2c=0`
` or b=(-1)/(2),c=(-1)/(4)`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|77 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int x^(2)e^(-2x)=e^(-2x)(ax^(2)+bx+c)+d then

If int x^(2)*e^(-2x)dx=e^(-2x)(ax^(2)+bx+c)+d then the value of |(a)/(bc)| is

If int x^(2)e^(-2x)dx=e^(-2x)(ax^(2)+bx+c)+D

int x^(2)e^(ax)dx

int (e^(2x) +e^(-2x))/(e^(x)) dx

int(dx)/(e^(x)+e^(2x))

int ((e ^(2x) + e ^(-2x)))/( e^(x)) dx =

int(e^(2x))/(2+e^(2x))dx

int(e^(2x))/(e^(2x)-2)dx

int1/((e^(2x)+e^(-2x))^(2))dx=