Home
Class 12
MATHS
Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3t...

`Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3tan^(-1)g(x)+C ,t h e n` both `f(x)a n dg(x)` are odd functions `f(x)` is monotonic function `f(x)=g(x)` has no real roots `int(f(x))/(g(x))dx=-1/x+3/(x^3)+c`

A

both `f(x)` and `g(x)` are odd functions

B

`f(x)` is one-one function

C

`f(x)=g(x)` has no real roots

D

`int (f(x))/(g(x))dx=(1)/(x)+(3)/(x^(3))+c`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

Let `I=int((x^(4)+1))/((x^(6)+1))dt=int((x^(2)+1)^(2)-2x^(2))/((x^(2)+1)(x^(4)-x^(2)+1))dx`
`=int((x^(2)+1)dx)/((x^(4)-x^(2)+1))-2 int (x^(2)dx)/((x^(6)+1))`
`=int((1+(1)/(x^(2)))dx)/((x^(2)-1+(1)/(x^(2))))-2 int (x^(2)dx)/((x^(3))^(2)+1)`
In the first integral, put `x-(1)/(x)=t," i.e., " (1+(1)/(x^(2)))dx=dt`
and in the second integral put `x^(3) =u, " i.e., " x^(2)dx=(du)/(3)`
Then ` I=int (dt)/(1+t^(2))-(2)/(3)int(du)/(1+u^(2))=tan^(-1) t-(2)/(3)tan^(-1)u +C`
`=tan^(-1)(x-(1)/(x))-(2)/(3)tan^(-1)(x^(3))+C`
Here, `f(x)=x-(1)/(x) and g(x)=x^(3)`
Draw the graphs of `f(x) and g(x)` .
We find that `f(x)` is many-one and `f(x)=g(x)` has no real roots.
`int(f(x))/(g(x))dx=int(x-(1)/(x))/(x^(3))dx=int((1)/(x^(2))-(1)/(x^(4)))dx= -(1)/(x)+(3)/(x^(3))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|77 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int(x^(4)+1)/(x^(6)+1)dx=tan^(-1)f(x)-(2)/(3)tan^(-1)g(x)+C, then both f(x) and g(x) are odd functions f(x) is monotonic function f(x)=g(x) has no real roots int(f(x))/(g(x))dx=-(1)/(x)+(3)/(x^(3))+c

If int(x+sin x)/(1+cos x)dx=f(x)tan g(x)+C , then, f(x)=

If a function f(x) satisfies f'(x)=g(x) . Then, the value of int_(a)^(b)f(x)g(x)dx is

If int(x^(2)-x+1)/((x^(2)+1)^((3)/(2)))e^(x)dx=e^(x)f(x)+c, then f(x) is an even function f(x) is a bounded function the range of f(x) is (0,1)f(x) has two points of extrema

If f(x)=tan^(-1)x,g(x)=tan^(-1)((1+x)/(1-x))" for "|x|lt1 , show that f'(x)=g'(x)andg(x)-f(x)=pi/4 .

Let int(x^((1)/(2)))/(sqrt(1-x^(3)))dx=(2)/(3)g(f(x))+c then

If int(dx)/(x^(2)+ax+1)=f(x(x))+c, then f(x) is inverse trigonometric function for |a|>2f(x) is logarithmic function for |a| 2g(x) is rational function for |a|<2

If f(x)=int(x^(8)+4)/(x^(4)-2x^(2)+2)dx and f(0)=0, then (a) f(x) is an odd function (b) f(x) has range R(c)f(x) has at least one real root (d) f(x) is a monotonic function.

If f(x) and g(x) are two functions with g (x) = x - 1/x and fog (x) =x^(3) -1/x^(3) then f(x) is