Home
Class 12
MATHS
If int(x^2-x+1)/((x^2+1)^(3/2))e^x dx=e^...

If `int(x^2-x+1)/((x^2+1)^(3/2))e^x dx=e^xf(x)+c ,t h e n` `f(x)` is an even function `f(x)` is a bounded function the range of `f(x)` is `(0,1)` `f(x)` has two points of extrema

A

`f(x)` is an even function

B

`f(x)` is a bounded function

C

the range of `f(x)` is (0, 1]

D

`f(x)` has two points of extrema

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`I=int (x^(2)-x+1)/((x^(2)+1)^(3//2))e^(x)dx`
`=inte^(x)[(x^(2)+1)/((x^(2)+1)^(3//2))-(x)/((x^(2)+1)^(3//2))]dx`
`=int e^(x)[(1)/(sqrt(x^(2)+1))+{(-x)/((x^(2)+1)^(3//2))}]dx`
`=e^(x)[f(x)+f'(x)]dx, " where "f(x)=(1)/(sqrt(x^(2)+1))`
`=e^(x) f(x)+c=(e^(x))/(sqrt(x^(2)+1))+c`
The graph of `f(x)` is given in the figure.

From the graph, `f(x)` is even, bounded function and has the range (0, 1].
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|77 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int(x^(2)-x+1)/((x^(2)+1)^((3)/(2)))e^(x)dx=e^(x)f(x)+c, then f(x) is an even function f(x) is a bounded function the range of f(x) is (0,1)f(x) has two points of extrema

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

If int((x-1)/(x^(2)))e^(x)dx=f(x)e^(x)+C, then write the value of f(x)

If int((x-1)/(x^(2)))e^(x)dx=f(x)e^(x)+c, then write the value of f(x)

For int (x -1)/( (x +1 ) ^(3)) e ^(x) dx = e ^(x) f (x) + c , f (x) =(x +1) ^(2).

If int(e^(x)-1)/(e^(x)+1)dx=f(x)+C, then f(x) is equal to

If f(x)= int_(x^2)^(x^(2) +4) e^(-t^(2) ) dt , then the function f(x) increases in