Home
Class 12
MATHS
If int sin^(-1)x cos^(-1)x dx=f^(-1)(x)[...

If `int sin^(-1)x cos^(-1)x dx=f^(-1)(x)[Ax-xf^(-1)(x)-2sqrt(1-x^(2))]+(pi)/(2)sqrt(1-x^(2))+2x+C,` then

A

`f(x)=sinx`

B

`f(x)=cosx`

C

`A=(pi)/(4)`

D

`A=(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, D

`int sin^(-1)x cos^(-1)x dx=int [(pi)/(2) sin^(-1)x-(sin^(-1)x)^(2)]dx`
`=(pi)/(2) (x sin^(-1)x+sqrt(1-x^(2)))-(x(sin^(-1)x)^(2)+2sin^(-1)xsqrt(1-x^(2))-2x)+C " (Integrating by parts)" `
`=sin^(-1)x[(pi)/(2)x-x sin^(-1)x-2 sqrt(1-x^(2))]+(pi)/(2)sqrt(1-x^(2))+2x+C`
` :. f^(-1)(x)=sin^(-1)x,f(x)=sinx`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|77 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int sin^(-1)x cos^(-1)xdx=f^(-1)(x)[Ax-xf^(-1)(x)-2sqrt(1-x^(2))]+2x+C, then f(x)=sin x(b)f(x)=cos xA=(pi)/(4)(d)A=(pi)/(2)

int sin^(-1)x cos^(-1)xdx=f^(-1)(x)[(pi)/(2)x-xf^(-1)(x)-2sqrt(1-x^(2))]+2x+c, then f(x) is equal to

int(x)/(sqrt(1-x^(2))*cos^(2)sqrt(1-x^(2)))dx=

inte^(sin^(-1)x)((x+sqrt(1-x^2))/(sqrt(1-x^2)))dx=

int_(-1)^(1) (sqrt(1+x+x^(2))-sqrt(1-x+x^(2))) dx =

int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int(x+cos^(-1)x)/(sqrt(1-x^(2)))dx

int_(-1)^(1)(sqrt(1+x+x^(2))-sqrt(1-x+x^(2)))dx=

int e^(x)(x+sqrt(1+x^(2)))(1+(1)/(sqrt(1+x^(2))))dx=

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx