Home
Class 12
MATHS
If int (3sin x+2 cosx)/(3cosx+2sinx)dx=a...

If `int (3sin x+2 cosx)/(3cosx+2sinx)dx=ax+blog_(e)|2 sinx+3 cosx|+c` then

A

`a= -(12)/(13)`

B

`b=(6)/(13)`

C

`a=(12)/(13)`

D

`b= -(15)/(39)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral equation given in the question, we will differentiate both sides with respect to \( x \) and then equate the coefficients of the resulting expressions. ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \int \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \, dx = ax + b \log_e |2 \sin x + 3 \cos x| + c \] 2. **Differentiate both sides with respect to \( x \):** \[ \frac{d}{dx} \left( \int \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \, dx \right) = \frac{d}{dx} \left( ax + b \log_e |2 \sin x + 3 \cos x| + c \right) \] 3. **Apply the Fundamental Theorem of Calculus on the left side:** \[ \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \] 4. **Differentiate the right side:** - The derivative of \( ax \) is \( a \). - The derivative of \( b \log_e |2 \sin x + 3 \cos x| \) using the chain rule is: \[ b \cdot \frac{1}{2 \sin x + 3 \cos x} \cdot (2 \cos x - 3 \sin x) \] Therefore, the right side becomes: \[ a + b \cdot \frac{2 \cos x - 3 \sin x}{2 \sin x + 3 \cos x} \] 5. **Set both sides equal:** \[ \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} = a + b \cdot \frac{2 \cos x - 3 \sin x}{2 \sin x + 3 \cos x} \] 6. **Multiply both sides by \( (3 \cos x + 2 \sin x)(2 \sin x + 3 \cos x) \) to eliminate the denominator:** \[ (3 \sin x + 2 \cos x)(2 \sin x + 3 \cos x) = (a(3 \cos x + 2 \sin x)(2 \sin x + 3 \cos x) + b(2 \cos x - 3 \sin x)(3 \cos x + 2 \sin x)) \] 7. **Expand both sides and collect like terms:** - Left side: \[ 6 \sin^2 x + 9 \sin x \cos x + 4 \cos^2 x \] - Right side: \[ 2a \sin x + 3a \cos x + 2b \cos x - 3b \sin x \] 8. **Equate coefficients of \( \sin x \) and \( \cos x \):** - For \( \sin x \): \[ 2a - 3b = 3 \] - For \( \cos x \): \[ 3a + 2b = 2 \] 9. **Solve the system of equations:** - From \( 2a - 3b = 3 \) (1) - From \( 3a + 2b = 2 \) (2) Multiply (1) by 3: \[ 6a - 9b = 9 \] Multiply (2) by 2: \[ 6a + 4b = 4 \] Subtract the second from the first: \[ -13b = 5 \implies b = -\frac{5}{13} \] Substitute \( b \) back into (1): \[ 2a - 3(-\frac{5}{13}) = 3 \implies 2a + \frac{15}{13} = 3 \] \[ 2a = 3 - \frac{15}{13} = \frac{39 - 15}{13} = \frac{24}{13} \implies a = \frac{12}{13} \] 10. **Final values:** \[ a = \frac{12}{13}, \quad b = -\frac{5}{13} \]

To solve the integral equation given in the question, we will differentiate both sides with respect to \( x \) and then equate the coefficients of the resulting expressions. ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \int \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \, dx = ax + b \log_e |2 \sin x + 3 \cos x| + c \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|77 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(cos2x)/(cosx-sinx)dx=

Evaluate int(3sinx+2cosx)/(3cosx+2sinx)dx.

int e^sinx cosx dx

int((2cosx-3sinx)/(3cosx+2sinx))dx

int(sinx/(2+cosx))dx

int(dx)/((sinx+cosx)(2cosx+sinx))=

int(sinx+2cosx)/(2sinx+cosx)dx

int(sinx+2cosx)/(2sinx+cosx)dx

int3/(sinx+cosx)dx

int(sinx-cosx)^(2)dx=