Home
Class 12
MATHS
Let g(x)=int(1+2cosx)/((cosx+2)^2)dxa n ...

Let `g(x)=int(1+2cosx)/((cosx+2)^2)dxa n dg(0)=0.` then the value of `8g(pi/2)` is __________

Text Solution

Verified by Experts

The correct Answer is:
0.5

`g(x)=int(cosx(cosx+2)+sin^(2)x)/((cosx+2)^(2))dx`
`=int underset(II)(underbrace(cosx))*(1)/(underset(I)(underbrace((cosx+2))))dx+int(sin^(2)x)/((cosx+2)^(2))dx`
`=(1)/(cosx+2)*sinx-int(sin^(2)x)/((cosx+2)^(2))dx+int(sin^(2))/((cosx+2)^(2))dx`
`:. g(x)=(sinx)/(cosx+2)+C`
`g(0)=0 " or " C=0`
`:. g(x)=(sinx)/(cosx+2) " or " g((pi)/(2))=(1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Main Previous Year|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Let g(x)=int(1+2cos x)/((cos x+2)^(2))dx and g(0)=0. then the value of 8g((pi)/(2)) is

int_(0)^(pi//2) (1+ 2 cos x)/((2+ cosx )^(2) )dx =

int_(0)^( pi/2)(cosx/(cosx+sinx))dx

int_0^(pi/2) cosx/(1+sinx)dx

int_(0)^( pi/2)(cosx)/(1+sinx)dx

int_(0)^( pi/2)(cosx)/(1+sin x)dx

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

Find the value of int_0^(2pi) |cosx|dx

8) int_0^(2pi)cosx dx

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is