Home
Class 12
MATHS
"Let " k(x)=int((x^(2)+1)dx)/(root(3)(x^...

`"Let " k(x)=int((x^(2)+1)dx)/(root(3)(x^(3)+3x+6)) " and " k(-1)=(1)/(root(3)(2)). " Then the value of " k(-2) " is "-.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k(-2) \) given the function \( k(x) \) defined as: \[ k(x) = \frac{\int (x^2 + 1) \, dx}{\sqrt[3]{x^3 + 3x + 6}} \] We are also given that \( k(-1) = \frac{1}{\sqrt[3]{2}} \). ### Step 1: Find the integral \( \int (x^2 + 1) \, dx \) The integral can be calculated as follows: \[ \int (x^2 + 1) \, dx = \frac{x^3}{3} + x + C \] ### Step 2: Substitute the integral into \( k(x) \) Now we can substitute this result back into the expression for \( k(x) \): \[ k(x) = \frac{\frac{x^3}{3} + x + C}{\sqrt[3]{x^3 + 3x + 6}} \] ### Step 3: Simplify \( k(x) \) We can express \( k(x) \) as: \[ k(x) = \frac{x^3 + 3x + 6}{3\sqrt[3]{x^3 + 3x + 6}} + \frac{C}{\sqrt[3]{x^3 + 3x + 6}} \] ### Step 4: Use the given value \( k(-1) \) We know that \( k(-1) = \frac{1}{\sqrt[3]{2}} \). Let's calculate \( k(-1) \): 1. Calculate \( x^3 + 3x + 6 \) at \( x = -1 \): \[ (-1)^3 + 3(-1) + 6 = -1 - 3 + 6 = 2 \] 2. Substitute into \( k(-1) \): \[ k(-1) = \frac{\frac{(-1)^3}{3} + (-1) + C}{\sqrt[3]{2}} = \frac{-\frac{1}{3} - 1 + C}{\sqrt[3]{2}} = \frac{C - \frac{4}{3}}{\sqrt[3]{2}} \] Setting this equal to \( \frac{1}{\sqrt[3]{2}} \): \[ \frac{C - \frac{4}{3}}{\sqrt[3]{2}} = \frac{1}{\sqrt[3]{2}} \] ### Step 5: Solve for \( C \) Multiplying both sides by \( \sqrt[3]{2} \): \[ C - \frac{4}{3} = 1 \] Thus, \[ C = 1 + \frac{4}{3} = \frac{7}{3} \] ### Step 6: Substitute \( C \) back into \( k(x) \) Now we can write \( k(x) \): \[ k(x) = \frac{\frac{x^3}{3} + x + \frac{7}{3}}{\sqrt[3]{x^3 + 3x + 6}} \] ### Step 7: Calculate \( k(-2) \) 1. Calculate \( x^3 + 3x + 6 \) at \( x = -2 \): \[ (-2)^3 + 3(-2) + 6 = -8 - 6 + 6 = -8 \] 2. Substitute into \( k(-2) \): \[ k(-2) = \frac{\frac{(-2)^3}{3} + (-2) + \frac{7}{3}}{\sqrt[3]{-8}} = \frac{-\frac{8}{3} - 2 + \frac{7}{3}}{-2} \] 3. Simplify the numerator: \[ -\frac{8}{3} - \frac{6}{3} + \frac{7}{3} = -\frac{8 + 6 - 7}{3} = -\frac{7}{3} \] Thus, \[ k(-2) = \frac{-\frac{7}{3}}{-2} = \frac{7}{6} \] ### Final Result The value of \( k(-2) \) is: \[ \boxed{\frac{7}{6}} \]

To solve the problem, we need to find the value of \( k(-2) \) given the function \( k(x) \) defined as: \[ k(x) = \frac{\int (x^2 + 1) \, dx}{\sqrt[3]{x^3 + 3x + 6}} \] We are also given that \( k(-1) = \frac{1}{\sqrt[3]{2}} \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Main Previous Year|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Let k(x)=int((x^(2)+1)dx)/((x^(3)+3x+6)^((1)/(3))) andk (-1)=(1)/(2^((1)/(3))) Then the value of k(-2) is

int(1)/(root(3)(x^(2)))dx

Let k(x)=int((x^(2)+1)/((x^(3)+3x+6)^((1)/(3)))dx and k(-1)=(1)/(2^((1)/(3))), the value of k(-2) is

int(dx)/(root(3)((x-1)^(4)*(x+1)^(2)))

int x^(2)(sin^(-1)x^(3))/(root(2)(1-x^(6)))dx

int x^(-3)5^((1)/(x^(2)))dx=k*5^((1)/(x^(2)))+C, then find the value of k.

If int_(0)^(1)(3x^(2)+2x+k)dx=0, find the value of k.

If int_(0)^(1)(3x^(2)+2x+k)dx=0, find the value of k.

If int _(0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then find the value of k/8.