Home
Class 12
MATHS
"The integral " int(dx)/(x^(2)(x^(4)+1)^...

`"The integral " int(dx)/(x^(2)(x^(4)+1)^(3//4))" equals"`

A

`((x^(4)+1)/(x^(4)))^(1//4)+c`

B

`(x^(4)+1)^(1//4)+c`

C

`-(x^(4)+1)^(1//4)+c`

D

`-((x^(4)+1)/(x^(4)))^(1//4)+c`

Text Solution

Verified by Experts

The correct Answer is:
D

` I=int(dx)/(x^(2)(x^(4)+1)^(3//4))`
` int(dx)/(x^(5)(1+(1)/(x^(4)))^(3//4))`
`"Let "1+(1)/(x^(4))=t^(4)`
`implies (-4)/(x^(5))dx=4t^(3)dt " or " (dx)/(x^(5))=-t^(3)dt`
` :. I=int(-t^(3)dt)/(t^(3))=-t+c=-(1+(1)/(x^(4)))^(1//4)+c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|10 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The integral int(dx)/((x^(4)-1)^((1)/(4))) equal:

The integral int(dx)/((x+4)^(8//7)(x-3)^(6//7)) is equal to : (where C is constant of integration)

(a) Integrate :int(dx)/(x^(1/2)+x^((1)/(3)))

The integral I = int (dx)/((x+1)^(3//4)(x-2)^(5//4)) is equal to

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

The integral int(dx)/(sqrt(2-3x-x^(2))) is equal to

The integral int(sec^2x)/(3+4tan x)dx

The integral int(1)/(4sqrt((x-1)^(3)(x+2)^(5)) dx is equal to (where c is a constant of integration)

Integrate: int(3 x^2)/(x^(3)-1)dx

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)