Home
Class 12
MATHS
Let In=int tan^n x dx, (n>1). If I4+I6...

Let `I_n=int tan^n x dx, (n>1)`. If `I_4+I_6=a tan^5 x + bx^5 + C`, Where `C` is a constant of integration, then the ordered pair `(a,b)` is equal to :

A

`(-(1)/(5),0)`

B

`(-(1)/(5),1)`

C

`((1)/(5),0)`

D

`((1)/(5),-1)`

Text Solution

Verified by Experts

The correct Answer is:
C

`I_(n)=int tan^(n)x dx`
` I_(4)+I_(6)=int(tan^(4)x+tan^(6)x)dx`
`=int tan^(4)xsec^(2)xdx`
`=(1)/(5) tan^(5)x+C`
` :. atan^(5)x+bx^(5)+C=(1)/(5)tan^(5)x+C ("given")`
`a=(1)/(5),b=0`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|10 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Let I_(n)=int tan^(n)xdx,(n>1). If I_(4)+I_(6)=a tan^(5)x+bx^(5)+C, where C is a constant of integration,then the ordered pair (a,b) is equal to :

Let I_(n)=int tan^(n)xdx,(n>1) If I_(4)+I_(6)=a tan^(5)x+bx^(5)+C, where C is a a constant of integration,then the ordered pair (a,b) is equal to : (1)((5)/(1),-1)(2)(-(1)/(5,0))(3)(-(1)/(5),1)(4)((1)/(5),0)

LetI _(n)=int tan^(n)xdx,(n>1). If I_(4)+I_(6)=a tan^(5)x+bx^(5)+c where c is a constant of integration then thee ordered pair (a,b) is

Let I_(n)=inttan^(n)xdx , n gt 1 . I_(4)+I_(6)=atan^(5)x+bx^(5)+C , where C is a constant of integration , then the ordered pair ( a , b) is equal to

Let I_(n)=inttan^nxdx,(ngt1)*I_(4)+I_(6)=atan^5x+bx^5+c , where c is constant of integration, then the ordered pair (a,b) is equal to

If int ( cos x - sin x )/( sqrt(8 - sin 2x ))dx = a sin^(-1) (( sin x + cos x )/(b)) +c , where c is a constant of integration, then the ordered pair (a, b) is equal to :

If int (2x + 5 )/(sqrt(7 - 6 x - x ^ 2 )) dx = A sqrt (7 - 6x - x ^ 2 ) + B sin ^ ( -1) (( x + 3 )/( 4 ) ) + C (Where C is a constant of integration), then the ordered pair (A, B) is equal to :

What is int sec^(n)x tan xdx equal to ? Where 'c' is a constant of integration

If int sin^(-1) ( sqrt( (x)/(1 + x) ) )dx = A(x) tan^(-1) (sqrtx) + B(x) + C , where C is a constant of integration then the ordered pair (A(x) , B(x) ) can be :