Home
Class 12
MATHS
int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin...

`int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 \ dx`

A

`(-1)/(1+cot^(3)x)+C`

B

`(1)/(3(1+tan^(3)x))+C`

C

`(-1)/(3(1+tan^(3)x))+C`

D

`(1)/(1+cot^(3)x)+C`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int(sin^(2)xcos^(2)x)/((sin^(5)x+cos^(3)xsin^(2)x+sin^(3)xcos^(2)x+cos^(5)x)^(2))dx `
Dividing numerator and denominator by ` cos^(10)x,` we get
`I=int(tan^(2)xsec^(6)xdx)/((tan^(5)x+tan^(2)x+tan^(3)x+1)^(2))`
` =int(tan^(2)xsec^(6)x)/((1+tan^(2)x)^(2)(1+tan^(3)x)^(2))dx`
`=int(tan^(2)xsec^(6)x)/((sec^(2)x)^(2)(1+tan^(3)x)^(2))dx`
`=int(tan^(2)xsec^(2)x)/(1+tan^(3)x)^(2)dx`
`=(1)/(3)int(3tan^(2)xsec^(2)x)/((1+tan^(3)x)^(2))dx`
`=(1)/(3)int((1+tan^(3)x)')/((1+tan^(3)x)^(2))dx`
`=(-1)/(3(1+tan^(3)x))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|10 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

The integral int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))dx is equal to (1) (1)/(3(1+tan^(3)x))+C(2)(-1)/(3(1+tan^(3)x))+C(3)(1)/(1+cot^(3)x)+C(4)(-1)/(1+cot^(3)x)+C

int(sin^2x+cos^2x)/(cos^3x)dx

int (sin^2x-cos^2x)/(sin x cos x) dx= _____

int(sin2x-cos2x)/(sin2x*cos2x)dx=?

int (sin^2x-cos^2x)/(sin^2x cos^2 x) dx is equal to:

int(5cos^3x+7sin^3x)/(sin^2xcos^2x)dx

Find int(sin^3x+cos^3x)/(sin^2xcos^2x)dx .

"int(sin^(2)x+cos^(2)x)/(sin^(2)x*cos^(2)x)dx