Home
Class 11
PHYSICS
Find 1^(2) + 2^(2) +.................+ 1...

Find `1^(2) + 2^(2) +.................+ 10^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the squares of the first 10 natural numbers, we can use the formula for the sum of squares of the first \( n \) natural numbers: \[ S = \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \] Here, \( n = 10 \). Let's calculate step by step: ### Step 1: Identify the values \[ n = 10 \] ### Step 2: Substitute \( n \) into the formula \[ S = \frac{10(10+1)(2 \cdot 10 + 1)}{6} \] ### Step 3: Simplify inside the parentheses \[ 10 + 1 = 11 \] \[ 2 \cdot 10 + 1 = 21 \] ### Step 4: Substitute these values back into the formula \[ S = \frac{10 \cdot 11 \cdot 21}{6} \] ### Step 5: Perform the multiplication \[ 10 \cdot 11 = 110 \] \[ 110 \cdot 21 = 2310 \] ### Step 6: Divide by 6 \[ S = \frac{2310}{6} = 385 \] So, the sum of the squares of the first 10 natural numbers is \( 385 \).

To find the sum of the squares of the first 10 natural numbers, we can use the formula for the sum of squares of the first \( n \) natural numbers: \[ S = \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \] Here, \( n = 10 \). Let's calculate step by step: ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 8|2 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 9|4 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 6|2 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

Find the value of 1^2 + 2^2 +.....+10^2

2^(10)+2^(9) .3^1+.....2.3^9+3^(10)=A-2^(11) . Find A=

Find (1)/(2)cosec10^(@)-2sin70^(@) .

Find the unit digit of 1^1 + 2^2 + 3^3 + …… 10^(10) .

Find the sum 2..^(10)C_(0) + (2^(2))/(2).^(10)C_(1) + (2^(3))/(3).^(10)C_(2)+(2^(4))/(4).^(10)C_(3)+"...."+(2^(11))/(11).^(10)C_(10) .

Evaluate : (i) 1 + 2 + 4 + … to 10 terms " " (ii) sqrt(2) - 2 + 2 sqrt(2) - …+ 64 sqrt(2)

Find the value of (1-1/(2^(2)))(1-1/(3^(2)))(1-1/(4^(2)))(1-1/(5^(2)))…….(1-1/(9^(2)))(1-1/(10^(2)))

Find the value of 2^(0)+3^(-2)+((1)/(5))^(2)+(1)/(10)

Find the value of (5a^(6))x(-10ab^(2))x(-2.1a^(2)b^(3)) for a=1 and b=(1)/(2)