Home
Class 12
MATHS
Let A={x:x^(2)-4x+3 lt 0,x in R } B={x:...

Let `A={x:x^(2)-4x+3 lt 0,x in R }` `B={x: 2^(1-x)+p le 0 , x^(2)-2(p+7)x+5 le0}` If `B sube A`, then `p in `

A

`[-4,-1]`

B

`[-4,oo)`

C

`(-oo,1)`

D

`[0,1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the sets \( A \) and \( B \) and find the range of \( p \) such that \( B \subseteq A \). ### Step 1: Determine the set \( A \) We start with the inequality defining set \( A \): \[ A = \{ x : x^2 - 4x + 3 < 0, \, x \in \mathbb{R} \} \] We can factor the quadratic expression: \[ x^2 - 4x + 3 = (x - 1)(x - 3) \] Now, we need to find where this product is less than zero: \[ (x - 1)(x - 3) < 0 \] ### Step 2: Analyze the sign of the product The critical points are \( x = 1 \) and \( x = 3 \). We can test the intervals: - For \( x < 1 \) (e.g., \( x = 0 \)): \( (0 - 1)(0 - 3) = 3 > 0 \) - For \( 1 < x < 3 \) (e.g., \( x = 2 \)): \( (2 - 1)(2 - 3) = -1 < 0 \) - For \( x > 3 \) (e.g., \( x = 4 \)): \( (4 - 1)(4 - 3) = 3 > 0 \) Thus, the solution to the inequality is: \[ A = (1, 3) \] ### Step 3: Determine the set \( B \) Now we analyze set \( B \): \[ B = \{ x : 2^{1-x} + p \leq 0, \, x^2 - 2(p+7)x + 5 \leq 0 \} \] #### Step 3.1: Solve the first inequality in \( B \) From the first inequality: \[ 2^{1-x} + p \leq 0 \implies p \leq -2^{1-x} \] As \( x \) varies, \( 2^{1-x} \) decreases. The maximum value occurs at \( x = 1 \): \[ p \leq -2^{1-1} = -2^0 = -1 \] #### Step 3.2: Solve the second inequality in \( B \) Now we analyze the second inequality: \[ x^2 - 2(p+7)x + 5 \leq 0 \] This is a quadratic in \( x \). The roots can be found using the quadratic formula: \[ x = \frac{2(p+7) \pm \sqrt{(2(p+7))^2 - 4 \cdot 1 \cdot 5}}{2} \] The discriminant must be non-negative for real roots: \[ (2(p+7))^2 - 20 \geq 0 \] \[ 4(p+7)^2 - 20 \geq 0 \] \[ (p+7)^2 \geq 5 \] Taking square roots: \[ |p + 7| \geq \sqrt{5} \] This leads to two cases: 1. \( p + 7 \geq \sqrt{5} \implies p \geq \sqrt{5} - 7 \) 2. \( p + 7 \leq -\sqrt{5} \implies p \leq -\sqrt{5} - 7 \) ### Step 4: Combine conditions for \( B \subseteq A \) For \( B \subseteq A \), we need: 1. \( p \leq -1 \) 2. \( p \geq \sqrt{5} - 7 \) or \( p \leq -\sqrt{5} - 7 \) ### Step 5: Determine the range of \( p \) From \( p \leq -1 \) and \( p \leq -\sqrt{5} - 7 \): - Since \( -\sqrt{5} \approx -2.236 \), we have \( -\sqrt{5} - 7 \approx -9.236 \). Thus, the valid range for \( p \) is: \[ p \in (-\infty, -\sqrt{5} - 7] \cup [\sqrt{5} - 7, -1] \] ### Final Answer The range of \( p \) such that \( B \subseteq A \) is: \[ p \in (-\infty, -9.236] \text{ or } p \in [-1, -1] \]

To solve the problem, we need to analyze the sets \( A \) and \( B \) and find the range of \( p \) such that \( B \subseteq A \). ### Step 1: Determine the set \( A \) We start with the inequality defining set \( A \): \[ A = \{ x : x^2 - 4x + 3 < 0, \, x \in \mathbb{R} \} \] ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|25 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Numerical) & JEE Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7)x+5 le 0} If A subB, then the range of real number p in [a,b] where, a,b are integers. Find the value of (b-a).

If A={x:x^(2)-2x+2gt0}andB={x:x^(2)-4x+3le0} A - B equals

Let A = {x:x in R " and " x^(2) -5x + 4 le 0} and B={x:x in R " and " x^(2)-12x + 45 gt 0} then which of the following is not true?

Let A={x : x in R,-1 lt x lt 1} , B={x : x in R, x le0 or x ge 2} and AuuB=R-D , then find set D

If f(x) {:(=-x^(2)", if " x le 0 ), (= 5x - 4 ", if " 0 lt x le 1 ),(= 4x^(2)-3x", if " 1 lt x le 2 ):} then f is

Let A={x:x is a prime number less than 10} and B= {x:x in N and 0 lt x -2 le 4} then A-B is

Express each of the following sts as an interval : (i) A={x:x in R, -4 , lt x lt 0} (ii) B={x:x in R, 0 le x lt 3} (iii) C= {x:x in R, 2 lt x le 6} (iv) D= {x:x in R, -5 le x le 2 } (v) E= {x:x in R, -3 le x lt2) (vi) F={x:x in R, -2, le x lt 0}

If f(x) {: (=(x^(2)-2x-3)/(x-3)" , for " 0 le x le 4 ),(= (x^(2)-1)/(x+2)", for " 4 lt x le 6 " then "):}

If f(x)={:{(x^(2)-4", for " 0 le x le 2),(2x+3", for " 2 lt x le 4),(x^(2)-5", for " 4 lt x le 6):} , then

CENGAGE-INEQUALITIES AND MODULUS-Single correct Answer
  1. The complete set of values of x for which (x^(3)(x-1)^(2)(x+4))/((x+...

    Text Solution

    |

  2. The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x...

    Text Solution

    |

  3. The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sinx-...

    Text Solution

    |

  4. The solution set of inequality (1)/(2^(x)-1) gt (1)/(1-2^(x-1)) is

    Text Solution

    |

  5. Let A={x:x^(2)-4x+3 lt 0,x in R } B={x: 2^(1-x)+p le 0 , x^(2)-2(p+7)...

    Text Solution

    |

  6. Let a, b gt 0 satisfies a^(3)+b^(3)=a-b. Then

    Text Solution

    |

  7. The number of integers satisfying |2x-3|+|x+5| le |x-8| is

    Text Solution

    |

  8. Which of the following is not the solution of |2x+5|-|x-3| ge |x+8| ...

    Text Solution

    |

  9. The number of integral values of x satisfying the equation |x-|x-4||=4...

    Text Solution

    |

  10. The solution of |2x-3| lt |x+2| is

    Text Solution

    |

  11. The solution set of the inequation |(1)/(x)-2| lt 4, is

    Text Solution

    |

  12. The solution of |x+(1)/(x)| gt 2 is

    Text Solution

    |

  13. The solution of the inequality (|x+2|-|x|)/(sqrt(8-x^(3))) ge 0 is

    Text Solution

    |

  14. If |(12x)/(4x^(2)+9)| le 1, then

    Text Solution

    |

  15. Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then t...

    Text Solution

    |

  16. The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+...

    Text Solution

    |

  17. If |x^2- 2x- 8| + |x^2+ x -2|= 3|x +2|, then the set of all real valu...

    Text Solution

    |

  18. The number of integers satisfying the equation |x|+|(4-x^(2))/(x)|=|(4...

    Text Solution

    |

  19. The equation |2ax-3|+|ax+1|+|5-ax|=(1)/(2) possesses

    Text Solution

    |

  20. The set of values of x satisfying |(x^(2)-5x+4)/(x^(2)-4)| le 1 is

    Text Solution

    |