Home
Class 12
MATHS
The set of values of x satisfying |(x^(2...

The set of values of `x` satisfying `|(x^(2)-5x+4)/(x^(2)-4)| le 1` is

A

`[0,(8)/(5)]uu[5/2,oo)`

B

`[(8)/(5),oo]`

C

`[-oo,-2]`

D

`R`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \left| \frac{x^2 - 5x + 4}{x^2 - 4} \right| \leq 1 \), we will break it down into two separate inequalities: 1. \( \frac{x^2 - 5x + 4}{x^2 - 4} \leq 1 \) 2. \( \frac{x^2 - 5x + 4}{x^2 - 4} \geq -1 \) ### Step 1: Solve the first inequality \( \frac{x^2 - 5x + 4}{x^2 - 4} \leq 1 \) Rearranging gives: \[ \frac{x^2 - 5x + 4}{x^2 - 4} - 1 \leq 0 \] This simplifies to: \[ \frac{x^2 - 5x + 4 - (x^2 - 4)}{x^2 - 4} \leq 0 \] \[ \frac{-5x + 8}{x^2 - 4} \leq 0 \] ### Step 2: Factor the numerator and denominator The numerator \( -5x + 8 \) can be factored as: \[ -5(x - \frac{8}{5}) \] The denominator \( x^2 - 4 \) factors to: \[ (x - 2)(x + 2) \] Thus, we have: \[ \frac{-5(x - \frac{8}{5})}{(x - 2)(x + 2)} \leq 0 \] ### Step 3: Identify critical points The critical points are: - \( x = \frac{8}{5} \) - \( x = 2 \) - \( x = -2 \) ### Step 4: Test intervals on a number line We will test the intervals determined by the critical points: \( (-\infty, -2) \), \( (-2, \frac{8}{5}) \), \( (\frac{8}{5}, 2) \), and \( (2, \infty) \). 1. **Interval \( (-\infty, -2) \)**: Choose \( x = -3 \) \[ \frac{-5(-3 - \frac{8}{5})}{(-3 - 2)(-3 + 2)} = \frac{-5(-3 - 1.6)}{(-5)(-1)} > 0 \] 2. **Interval \( (-2, \frac{8}{5}) \)**: Choose \( x = 0 \) \[ \frac{-5(0 - \frac{8}{5})}{(0 - 2)(0 + 2)} = \frac{-5(-\frac{8}{5})}{(-2)(2)} = \frac{8}{4} > 0 \] 3. **Interval \( (\frac{8}{5}, 2) \)**: Choose \( x = 1.5 \) \[ \frac{-5(1.5 - \frac{8}{5})}{(1.5 - 2)(1.5 + 2)} < 0 \] 4. **Interval \( (2, \infty) \)**: Choose \( x = 3 \) \[ \frac{-5(3 - \frac{8}{5})}{(3 - 2)(3 + 2)} > 0 \] ### Step 5: Combine results From the tests, we find that the inequality holds in the interval \( \left( \frac{8}{5}, 2 \right) \). ### Step 6: Solve the second inequality \( \frac{x^2 - 5x + 4}{x^2 - 4} \geq -1 \) Rearranging gives: \[ \frac{x^2 - 5x + 4}{x^2 - 4} + 1 \geq 0 \] This simplifies to: \[ \frac{x^2 - 5x + 4 + (x^2 - 4)}{x^2 - 4} \geq 0 \] \[ \frac{2x^2 - 5x}{x^2 - 4} \geq 0 \] ### Step 7: Factor the numerator and denominator The numerator \( 2x^2 - 5x \) factors to: \[ x(2x - 5) \] Thus, we have: \[ \frac{x(2x - 5)}{(x - 2)(x + 2)} \geq 0 \] ### Step 8: Identify critical points The critical points are: - \( x = 0 \) - \( x = \frac{5}{2} \) - \( x = 2 \) - \( x = -2 \) ### Step 9: Test intervals on a number line We will test the intervals determined by the critical points: \( (-\infty, -2) \), \( (-2, 0) \), \( (0, 2) \), \( (2, \frac{5}{2}) \), and \( (\frac{5}{2}, \infty) \). 1. **Interval \( (-\infty, -2) \)**: Choose \( x = -3 \) \[ \frac{-3(2(-3) - 5)}{(-3 - 2)(-3 + 2)} > 0 \] 2. **Interval \( (-2, 0) \)**: Choose \( x = -1 \) \[ \frac{-1(2(-1) - 5)}{(-1 - 2)(-1 + 2)} > 0 \] 3. **Interval \( (0, 2) \)**: Choose \( x = 1 \) \[ \frac{1(2(1) - 5)}{(1 - 2)(1 + 2)} < 0 \] 4. **Interval \( (2, \frac{5}{2}) \)**: Choose \( x = 2.2 \) \[ \frac{2.2(2(2.2) - 5)}{(2.2 - 2)(2.2 + 2)} > 0 \] 5. **Interval \( (\frac{5}{2}, \infty) \)**: Choose \( x = 3 \) \[ \frac{3(2(3) - 5)}{(3 - 2)(3 + 2)} > 0 \] ### Step 10: Combine results From the tests, we find that the inequality holds in the intervals \( (-\infty, -2) \), \( (-2, 0) \), \( (2, \frac{5}{2}) \), and \( (\frac{5}{2}, \infty) \). ### Step 11: Find the common intervals The common intervals from both inequalities are: - \( (0, \frac{8}{5}) \) - \( (2, \frac{5}{2}) \) ### Final Answer Thus, the set of values of \( x \) satisfying the original inequality is: \[ \boxed{(0, \frac{8}{5}) \cup (2, \frac{5}{2})} \]

To solve the inequality \( \left| \frac{x^2 - 5x + 4}{x^2 - 4} \right| \leq 1 \), we will break it down into two separate inequalities: 1. \( \frac{x^2 - 5x + 4}{x^2 - 4} \leq 1 \) 2. \( \frac{x^2 - 5x + 4}{x^2 - 4} \geq -1 \) ### Step 1: Solve the first inequality \( \frac{x^2 - 5x + 4}{x^2 - 4} \leq 1 \) Rearranging gives: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|25 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Numerical) & JEE Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Set of values of x satisfying (x^(2)-4x+1)^(2)+(x^(2)-4x+1)-2<=0 , is

Set of values of x satisfying (|x|-1)/(|x|+2)>0, is

The set of real values of x satisfying "log"_(0.2) ((x+2)/(x)) le 1 , is

The set of real values of x satisfying ||x-1|-1|le 1 , is

The sum of all real values of x satisfying the equation (x^(2) -5x+5)^(x^(2)+4x-45)=1 is :

CENGAGE-INEQUALITIES AND MODULUS-Single correct Answer
  1. The complete set of values of x for which (x^(3)(x-1)^(2)(x+4))/((x+...

    Text Solution

    |

  2. The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x...

    Text Solution

    |

  3. The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sinx-...

    Text Solution

    |

  4. The solution set of inequality (1)/(2^(x)-1) gt (1)/(1-2^(x-1)) is

    Text Solution

    |

  5. Let A={x:x^(2)-4x+3 lt 0,x in R } B={x: 2^(1-x)+p le 0 , x^(2)-2(p+7)...

    Text Solution

    |

  6. Let a, b gt 0 satisfies a^(3)+b^(3)=a-b. Then

    Text Solution

    |

  7. The number of integers satisfying |2x-3|+|x+5| le |x-8| is

    Text Solution

    |

  8. Which of the following is not the solution of |2x+5|-|x-3| ge |x+8| ...

    Text Solution

    |

  9. The number of integral values of x satisfying the equation |x-|x-4||=4...

    Text Solution

    |

  10. The solution of |2x-3| lt |x+2| is

    Text Solution

    |

  11. The solution set of the inequation |(1)/(x)-2| lt 4, is

    Text Solution

    |

  12. The solution of |x+(1)/(x)| gt 2 is

    Text Solution

    |

  13. The solution of the inequality (|x+2|-|x|)/(sqrt(8-x^(3))) ge 0 is

    Text Solution

    |

  14. If |(12x)/(4x^(2)+9)| le 1, then

    Text Solution

    |

  15. Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then t...

    Text Solution

    |

  16. The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+...

    Text Solution

    |

  17. If |x^2- 2x- 8| + |x^2+ x -2|= 3|x +2|, then the set of all real valu...

    Text Solution

    |

  18. The number of integers satisfying the equation |x|+|(4-x^(2))/(x)|=|(4...

    Text Solution

    |

  19. The equation |2ax-3|+|ax+1|+|5-ax|=(1)/(2) possesses

    Text Solution

    |

  20. The set of values of x satisfying |(x^(2)-5x+4)/(x^(2)-4)| le 1 is

    Text Solution

    |