Home
Class 12
MATHS
If x gt 0, y gt 0, z gt 0, the least val...

If `x gt 0`, `y gt 0`, `z gt 0`, the least value of
`x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y)` is

A

`3`

B

`1`

C

`5`

D

`6`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Let `log_(e)x=a`, `log_(e)y=b`, `log_(e)z=c`
`impliesx=e^(a)`, `y=e^(b)`, `z=e^(c )`
So, given expression `e^(a(b-c))+e^(b(c-a))+e^((a-b))`
Using A.M. ge G.M.
`:.(e^(a(b-c))+e^(b(c-a))+e^(c(a-b)))/(3)` ge [a^(a(b-c)+b(c-a)+c(a-b))]^(1//3)`
`:.e^(a(b-c))+e^(b(c-a)+e^(c(a-b)))ge 3`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

Find the value of (x^(log y - log z))(y^(log z-log x))(z^(log x - log y))

What is the value of log_(y)x^(5)log_(x)y^(2)log_(z)z^(3) ?

log_(x rarr n)-log_(a)y=a,log_(a)y-log_(a)z=b,log_(a)z-log_(a)x=c

If x , y and z be greater than 1, then the value of |{:(1, log_(x)y, log_(x) z),(log_(y)x , 1 ,log_(y)z),(log_(z)x , log_z y , 1 ):}| =

find the derivative of y=e^(x)log_(e)x

prove that x^(log y-log z)*y^(log z-log x)*z^(log x-log y)=1