Home
Class 12
MATHS
If a,b,x,y are real number and x,y gt 0,...

If `a,b,x,y` are real number and `x,y gt 0`, then `(a^(2))/(x)+(b^(2))/(y) ge ((a+b)^(2))/(x+y)` so on solving it we have `(ay-bx)^(2) ge 0`.
Similarly, we can extend the inequality to three pairs of numbers, i.e,
`(a^(2))/(x)+(b^(2))/(y)+(c^(2))/(z) ge ((a+b+c)^(2))/(x+y+z)`
Now use this result to solve the following questions.
The value of `(a^(2)+b^(2))/(a+b)+(b^(2)+c^(2))/(b+c)+(a^(2)+c^(2))/(a+c)` is

A

` ge (a+b+c)`

B

`ge (1)/(2)(a+b+c)`

C

`(3)/(2) le (a+b+c)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `(a^(2)+b^(2))/(a+b)+(b^(2)+c^(2))/(b+c)+(a^(2)+c^(2))/(a+c)`
`=(a^(2))/(a+b)+(b^(2))/(b+c)+(c^(2))/(a+c)+(b^(2))/(a+b)+(c^(2))/(b+c)+(a^(2))/(a+c)`
`ge ((2a+2b+2c)^(2))/(4(a+b+c)) ge (a+b+c)`
`implies(a^(2))/(a+b)+(b^(2))/(b+c)+(c^(2))/(a+c)+(b^(2))/(a+b)+(c^(2))/(b+c)+(a^(2))/(a+c) ge a+b+c`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.1|8 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Numerical) & JEE Previous Year|11 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

Solve the following pair of equations: (x)/(a)+ (y)/(b)= a +b, (x)/(a^(2)) + (y)/(b^(2))=2, a, b ne 0

Solve the following equation by cross- multiplication method: (a)/(x)-(b)/(y)=0 and a(b^(2))/(x)+a(b^(2))/(y)=a^(2)+b^(2)

Knowledge Check

  • If a,b,x,y are real number and x,y gt 0 , then (a^(2))/(x)+(b^(2))/(y) ge ((a+b)^(2))/(x+y) so on solving it we have (ay-bx)^(2) ge 0 . Similarly, we can extend the inequality to three pairs of numbers, i.e, (a^(2))/(x)+(b^(2))/(y)+(c^(2))/(z) ge ((a+b+c)^(2))/(x+y+z) Now use this result to solve the following questions. If abc=1 , then the minimum value of (1)/(a^(3)(b+c))+(1)/(b^(3)(a+c))+(1)/(c^(3)(a+b)) is

    A
    `3`
    B
    `3//2`
    C
    `6`
    D
    `9`
  • Similar Questions

    Explore conceptually related problems

    Represent the following inequations on number lines. (a) x le 3 (b) y ge -2 (c) z lt -3

    if (x)/(a^(2)-b^(2))=(y)/(b^(2)-c^(2))=(z)/(c^(2)-a^(2)) , then prove that x+y+z=0.

    (a)/(2)=(b)/(3)=(c )/(5)=(a+b-c)/(x)=(2a+b+2c)/(y) , find x+y=?

    If a^(x)=b^(y)=c^(2) and b^(2)=ac, prove that y=(2xz)/(x+z)

    If (a)/(x-a) + (b)/(y-b) + (c )/(z-c)=2 find (x)/(x-a) + (y)/(y-b) + (z)/(z-c) = ?

    If a(y+z)=b(z+x)=c(x+y) then show that (a-b)/(x^(2)-y^(2))=(b-c)/(y^(2)-z^(2))=(c-a)/(z^(2)-x^(2))]

    If a,b,c,x,y,z are real quantities,and (a+b+c)^(2)=3(bc+ca+ab-x^(2)-y^(2)-z^(2)) ,then prove that a=b=c and x=0,y=0,z=0