Home
Class 12
MATHS
Minimum value of f(x)=cos^(2)x+(secx)/(4...

Minimum value of `f(x)=cos^(2)x+(secx)/(4)`, `x in (-(pi)/(2),(pi)/(2))` is

A

`3//2`

B

`3//4`

C

`3//8`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `f(x)=cos^(2)x+(secx)/(4)`
`=cos^(2)x+(1)/(4cosx)`
For `x in (-(pi)/(2),(pi)/(2))`, `cosx gt 0`
Now `f(x)=cos^(2)x+(1)/(8cosx)+(1)/(8cosx)`
Using `A.M. ge G.M.`
`implies(cos^(2)x+(1)/(8cosx)+(1)/(8cosx))/(3) ge ((1)/(8^(2)))^((1)/(3))=[((1)/(4))^(3)]^((1)/(3)`
`impliescos^(2)x+(1)/(4cosx) ge (3)/(4)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of f(x)=(x^(2)sin^(2)x+4)/(x sin x), where x in(0,(pi)/(2))

The minimum value of f(x)-sin^(4)x+cos^(4)x,0lexle(pi)/(2) is

Find the maximum and minimum value of f(x)=sin x+(1)/(2)cos2x in [0,(pi)/(2)]

The maximum value of the function f(x)=x sin x+cos x-(x^(2))/(4) for x in[-(pi)/(2),(pi)/(2)] is

The minimum value of cos^(2)((pi)/(4)-x)+(sin x-cos x)^(2) is

" The maximum value of the function "f(x)=x sin x+cos x-(x^(2))/(4)" for "x in[-(pi)/(2)*(pi)/(2)]" is "

Find the maximum and the minimum values of f(x)=sin3x+4,quad x in(-pi/2,pi/2), if any.

Minimum value of the expression (1)/(cos^(2)((pi)/(4)+x)+sin^(2)((pi)/(4)-x))

If m and M be the minimum and maximum value of f(x)=cos((pi)/(10)+x)-cos((pi)/(10)-x)-cos((3 pi)/(10)+x)+cos((3 pi)/(10)-x) then

f(x)=cos2x, interval [-(pi)/(4),(pi)/(4)]